8
Объяснение:
Пусть все наши 14 карточек находится по порядку и не "склеиваются". Тогда поставим между ними знак + и посчитаем сумму
5 + 5 + 5 + … + 5 = 5*14 = 70 < 295 - не получилось.
Наша сумма оказалась слишком маленькая поэтому нам неоюходимо соединять карточки 5 в числа. Ясно, что в 555 соединять не надо - слишком много. Тогда попробуем по порядку:
1 число 55: 55 + 5 + 5 + ... + 5 = 115 < 295 - не попали
2 чисел 55: 55 + 55 + 5 + 5 + ... + 5 = 160 - снова не попали
3 числа 55: 55 + 55 + 55 + 5 + ... = 205 < 295 - опять не то
4 числа 55: 55 + 55 + 55 + 55 + 5 + ... = 250 < 295 - близко, но не то
5 чисел 55: 55 + 55 + 55 + 55 + 55 + 5 + 5 + 5 + 5 = 295 - Получилось!
Тогда посчитаем количество плюсов в примере
55 + 55 + 55 + 55 + 55 + 5 + 5 + 5 + 5
Получим 8 штук - и это ответ!
Пусть х км/ч скорость второго авто, тогда (х+20) км/ч скорость первого. Замечаем, что 2 ч 24 мин = 2,4 ч , составляем уравнение по времени в пути двух авто:
420 / х - 420 / (х+20) = 2,4
Приводим к общему знаменателю х(х+20) и
отбрасываем его, записав, что х не=0 и х не=-20
420(х+20)-420х=2,4х(х+20)
420х+8400-420х = 2,4x^2+48х
2,4x^2+48x- 8400 =0
x^2+20x-3500=0
D= 400+4*3500=14400, 2 корня
х(1)=(-20+120)/2 = 50 (км/ч ) скорость второго авто
х(2)= (-20-120)/2= -70 не подходит под усл задачи
50+20=70 км/ч скорость первого авто
x² - 9 > 0
По формуле разности квадратов:
(x - 3)(x + 3) > 0
Неравенство равно нулю при x = 3 и x = -3. Используя метод интервалов или схематично построенную параболу, ветви которой направлены вверх и пересекают ось x в точках 3 и -3, находим, что x∈(-∞ ; -3) ∪ (3; ∞) - искомая область определения.
ОТВЕТ: D(y) = (-∞ ; -3) ∪ (3; ∞)