Начинаем с последнего интервала (5; +∞): берем х=6, подставляем в каждую скобку: (х-2)=6-2=4 >0 (+) (х-5)=6-5=1>0 (+) (x+8)=6+8=14>0 (+) В итоге (+) * (+) * (+) = (+) - знак интервала будет (+).
Следующий интервал - (2; 5): берем х=3, подставляем в каждую скобку: (x-2)=3-2=1>0 (+) (x-5)=3-5= -2<0 (-) (x+8)=3+8=11>0 (+) В итоге (+) * (-) * (+) = (-) - знак интервала будет (-).
Следующий интервал (-8; 2): берем х=0, подставляем в каждую скобку: (x-2)=0-2= -2<0 (-) (x-5)=0-5= -5<0 (-) (x+8)=0+8=8>0 (+) В итоге (-) * (-) * (+)=(+) - знак интервала будет (+).
Следующий интервал (-∞; -8): берем х= -10, подставляем в каждую скобку: (x-2)=-10-2= -12<0 (-) (x-5)= -10 -5= -15<0 (-) (x+8)=-10+8= -2<0 (-) В итоге (-) * (-) * (-)= (-) - знак интервала будет (-). - + - + -8 2 5
1) x^2-10x+30<0 y(x)= x^2-10x+30 - функция квадратичная с ветвями, направленными вверх( старший коэффициент >0).Решим квадратное уравнение: x^2-10x+30=0; D= (-10)^2-4*1*30=-20. Видим, что дискриминант меньше нуля, поэтому парабола будет полностью лежать выше оси Х, не пересекая эту ось ни в одной точке, и все значения У параболы, соответственно, будут принимать положительные значения. Поэтому, неравенство x^2-10x+30<0 не имеет решений. 2) x^2+4x+5<0 y(x)=x^2+4x+5 - квадратичная функция, ветви параболы направлены вверх. Решим квадратное уравнение: x^2+4x+5=0 D=4^2-4*1*5=-4. Дискриминант меньше нуля, поэтому неравенство не имеет решений( также как и в первом случае). 3) 4x^2-9x+7<0 Решим уравнение: 4x^2-9x+7=0; D=(-9)^2-4*4*7=-31. Неравенство не имеет решений.
ответ: