Если 2 стула дороже, чем один стол на 100 грн., то 4 стула дороже, чем два стола на 200 грн.
Пусть стол стоит х грн., тогда 3 стола стоят 3х грн., а 4 стула заменим двумя столами и 200 гривнами, тогда стоимость покупки из 3 столов и 4 стульев будет такой
3*х+(2*х+200)=4700
5х=4700-200
5х=4500
х=900, значит, один стол стоит 900 грн., тогда если к этой сумме добавить 100 грн. и разделить на два, получим цену стула, т.е. (900+100)/2=500
Значит, 500 грн. стоит стул.
традиционный.
цена стола х, цена стула у, отсюда система уравнений
2у-х=100
3х+4у=4700
Первое уравнение умножим на 3 и сложим со вторым. Получим
-3х+6у=300
3х+4у=4700
10у=5000, откуда у=5000/10
у=500, стул стоит 500 грн. , тогда стол стоит х=2у-100=2*500-100=900
Стол стоит 900 грн.
Дробь не имеет смысла если её знаменатель равен нулю т.к. на ноль делить нельзя.
\dfrac{x}{x-4} ;\; x-4=0;\; \bold{x=4} dfrac{2b^2-9}{b(b-5)} ;\; b(b-5)=0;\; \bold{b=\{0;5\}}.
Дробь равна нулю если числитель равен нулю, а знаменатель - не равен.
\dfrac{x+1}{x} =0;\; \begin{Bmatrix}x+1=0\\x\ne 0\end{matrix} \\\begin{Bmatrix}x=-1\\x\ne 0\end{matrix} \qquad \bold{x=-1}dfrac{x(x-2)^2 }{x-2} =0;\; \begin{Bmatrix}x(x-2)^2 =0\\x-2\ne 0\end{matrix} \\\begin{Bmatrix}x=\{0;2\}\\x\ne 2\end{matrix} \qquad \bold{x=0}.
Объяснение:
удачи получить хорошую отметку