Криволинейной трапецией называется плоская фигура, ограниченная осью Х, прямыми a и b, и графиком непрерывной на отрезке (a,b) функции f(x), которая не меняет знак на этом промежутке. Пусть данная фигура расположена не ниже оси абсцисc. Тогда площадь криволинейной трапеции численно равна определенному интегралу f(x) по dx от а до b.
{ ax + y + z = 1 { x + ay + z = a { x + y + az = a^2 Умножаем 3 уравнение на -1 и складываем со 2 уравнением { ax + y + z = 1 { x + ay + z = a { 0x + (a-1)y + (1-a)z = a-a^2 = a(1-a) При а = 1 3 уравнение тождественно истинно, значит система имеет бесконечное множество решений. При а =/= 1 делим 3 уравнение на 1-а { ax + y + z = 1 { x + ay + z = a { -y + z = a Подставляем z = y + a из 3 уравнения в 1 и 2 { ax + y + y + a = 1 { x + ay + y + a = a Упрощаем { ax + 2y = 1 - a { x + y(1 + a) = 0 Подставляем из 2 уравнения x = -y(1 + a) в 1 уравнение -ay(1 + a) + 2y = 1 - a y*(-a^2 - a + 2) = 1 - a y*(a^2 + a - 2) = a - 1 y*(a - 1)(a + 2) = a - 1 Так мы рассматриваем случай a =/= 1, то разделим на (а - 1) y(a + 2) = 1 При а = -2 левая часть = 0, а правая = 1, значит, решений нет.
Кажется, я уже решал подобную задачу { ax + y + z = 1 { x + ay + z = a { x + y + az = a^2 Умножаем 2 уравнение на -а и складываем с 1. Умножаем 3 уравнение на -1 и складываем со 2. { ax + y + z = 1 { 0x + (-a^2+1)y + (-a+1)z = -a^2+1 { 0x + (a-1)y + (1-a)z = -a^2+a Упрощаем { ax + y + z = 1 { -(a+1)(a-1)y - (a-1)z = -(a+1)(a-1) { (a-1)y - (a-1)z = -a(a-1) Если а = 1, то 2 и 3 уравнения обращаются в 0, остается 1 уравнение. x + y + z = 1 У него бесконечное множество решений, это нам не подходит. Значит, a =/= 1. Делим 2 и 3 уравнения на (a-1) { ax + y + z = 1 { -(a+1)y - z = -(a+1) { y - z = -a Выразим z через y { ax + y + z = 1 { -(a+1)y +(a+1) = z { y + a = z Уравниваем левые части 2 и 3 уравнений (a+1)(-y+1) = y + a -ay - y + a + 1 = y + a -ay - 2y + 1 = 0 1 = ay + 2y = y(a + 2) y = 1/(a + 2) При a = -2 у системы решений нет.
Криволинейной трапецией называется плоская фигура, ограниченная осью Х, прямыми a и b, и графиком непрерывной на отрезке (a,b) функции f(x), которая не меняет знак на этом промежутке. Пусть данная фигура расположена не ниже оси абсцисc. Тогда площадь криволинейной трапеции численно равна определенному интегралу f(x) по dx от а до b.