(2; 3,5);
(1; 2);
(5;14)
Объяснение:
Пары чисел, являющихся решениями уравнения х²-2у+3=0, должны быть такими, чтобы при их подстановке в уравнение х²-2у+3 = 0, в ответе действительно получался бы 0, а не какое-то другое число.
Согласно условию задачи, необходимо выбрать пары чисел, являющихся решением уравнения х²-2у+3 = 0, из 4 следующих пар:
1) х = 2, у = 3,5;
2) х = 0, у = -1,5;
3) х = 1; у = 2;
4) х = 5; у = 14.
После подстановки этих пар чисел получаем:
1) 2²-2·3,5 +3 = 4 - 7 +3 = 7 - 7 = 0; так как полученное в результате подстановки значение действительно равно, то это говорит о том, что данная пара чисел (2; 3,5) является решением уравнения х²-2у+3=0;
2) 0²-2·(-1,5) +3 = 0 + 3 + 3 = 6; мы получили 6, но так как 6 ≠ 0, то данная пара чисел (0; -1,5) не является решением уравнения х²-2у+3=0;
3) 1²-2·2 +3 = 1 - 4 + 3 = 4 - 4 = 0; мы получили 0; т.к. 0 = 0, то данная пара чисел (1; 2) является решением уравнения х²-2у+3=0;
4) 5²-2 · 14 + 3 = 25 - 28 + 3 = 28 - 28 = 0; мы получили 0; т.к. 0 = 0, то данная пара чисел (5; 14) является решением уравнения х²-2у+3=0.
Таким образом, решениями уравнения х²-2у+3=0 являются следующие пары чисел: (2; 3,5); (1; 2); (5;14).
ответ: решениями уравнения х²-2у+3=0 являются пары чисел: (2; 3,5); (1; 2); (5;14).
Парабола: определение, свойства, построение
Параболой называется линия, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
y2=2px
при условии p>0.
Из уравнения (1) вытекает, что для всех точек параболы x≥0. Парабола проходит через начало канонической системы координат. Эта точка называется вершиной параболы.
Форма параболы известна из курса средней школы, где она встречается в качестве графика функции y=ax2. Отличие уравнений объясняется тем, что в канонической системе координат по сравнению с прежней оси координат поменялись местами, а коэффициенты связаны равенством 2p=a−1.
Фокусом параболы называется точка F с координатами (p/2,0) в канонической системе координат.
Директрисой параболы называется прямая с уравнением x=−p/2 в канонической системе координат
Утверждение.
Расстояние от точки M(x,y), лежащей на параболе, до фокуса равно
r=x+p2
Доказательство.
Вычислим квадрат расстояния от точки M(x,y) до фокуса по координатам этих точек: r2=(x−p/2)2+y2 и подставим сюда y2 из канонического уравнения параболы. Мы получаем
r2=(x−p2)2+2px=(x+p2)2.
Отсюда в силу x≥0 следует равенство
9х²-4 9х²-6х 9х²+6х
2 - 1 + 3х-4 =0
(3х-2)(3х+2) 3х(3х-2) 3х(3х+2)
х≠0 х≠2 х≠ -2
3 3
Общий знаменатель: 3х(3х-2)(3х+2)
2*3х-(3х+2)+(3х-4)(3х-2)=0
6х-3х-2+9х²-12х-6х+8=0
9х²-15х+6=0
3х²-5х+2=0
Д=25-4*3*2=25-24=1
х₁=5-1 = 4 = 2 - не подходит
3*2 6 3
х₂= 6 = 1
6
0; 1; 2
ответ: корень уравнения х=1 находится между 0 и 2.