Объяснение:
чтобы построить графики функций, вместо а подставим различные значения
а=0
тогда функция получается такая: y=x²
а=1
функция y=(x-3)²+2
а=2
функция y=(x-6)²+4
а=-1
функция y=(x+3)²-2
а=-2
функция y=(x+6)²-4
Можно взять 2 или 3 функции, но пусть будет больше для ясности
Теперь построим графики этих функций. Все они - параболы, т.к. x².
Прикрепляю их как фото. Если все графики построить на одной координатной плоскости, то можно увидеть, что они располагаются на одной прямой. Точки этой прямой
х: 0; 3; 6; -3; -6
у: 0; 2; 4; -2; -4
Эти точки соответствуют вершинам пяти взятых мной парабол.
Прямая - это график линейной функции y=kx. k - это коэффициент, который нужно найти. поставляем любую точку из таблицы выше (не (0;0)), например (3;2). х=3, у=2, получаем уравнение 2=k*3, k=2/3. график прямой линии и графики всех парабол прикреплен на втором фото. функция графика прямой y = 2/3 * x
Дело в том, что вместо а можно подставить абсолютно любое число. Хоть -100, хоть 0,2973, вообще любое. И какое бы число ни было, вершина параболы будет лежать на этой прямой
f (3)=3^2=9
f'(x)=2x=2×3=6
y=f (a)+f'(a)(x-a)
y=9+6 (x-3)=9+6x-18
ответ: y=6x-9
Б) f(x)=2-x-x^3. a=0
f (0)=2-0-0^3=2
f'(x)=-1-3 x^2=-1-3×0^2=-1
y=2+(-1)(x-0)=2-x
ответ: y=2-x