Решить, тригонометрия. 1. вычислите 2sin^2a+корень2cosa+tga, если ctga=1 0 2. (1-4sin^2a*cos^2a)/(cos^2a-sin^2a) 3.преобразуйте в произведение cos2a-cos3a-cos4a+cos5a
1,cos a- cos3a + 2 sin 2a=-2sin(2a)*cos(-a)+2 sin 2a=2 sin 2a(1-cos(a)) 2.cos^2a+sin^a-5=1-5=-4 7^-1/3:49^-2/3=1/7^1/3 * 49^2/3 = (49*7)^1/3=7 3,Нужно использовать формулу разности синусов двух углов - в числителе, и формулу разности косинусов двух углов в знаменателе. Чтобы не запутаться, я сделаю преобразования отдельно. 1) (sina-sin5a)-2cos3a=2sin(a-5a)/2*cos(a+5a)/2-2cos3a=2sin(-2a)*cos3a-2cos3a= -2sin2a*cos3a-2cos3a=-2cos3a(sin2a+1). 2) (cosa-cos5a)+3sin3a=-2sin(a+5a)/2*sin(a-5a)/2+2sin3a=-2sin3a*sin(-2a)+2sin3a= 2sin3a*sin2a+2sin3a=2sin3a(sin2a+1). 3) Скобка в числителе и знаменателе сокращается и остается -2cos3a/2sin3a=-ctg3a.
Sin2x=2sinx*cosx=-0.6 sinx*cosx=-0.3 sinx= -0.3/cosx; sin^2x=0.09/cos^2x теперь подставлю его выражение в основное тригонометрическое тождество sin^2x+cos^2x=1 получу .0.09/cos^2x+cos^2x=1 введу новую переменную t=cox^2x тогда 0.09/t+t=1 приводя все к общему знаменателю-в числителе получу 0.09+t^2=t t^2-t+0.09=0 D=1-4*0.09=1-0.36=0.64 t1=(1+0.8)/2=0.9 t2=(1-0.8)/2=0.1 сos^2x=0.9; cosx1=-3/√10; cos^2x=0.1; cosx2=-1/√10 sinx1=-0.3/cosx; sinx=-0.3/(-3/√10)=1/√10 sinx2=-0.3/(-1/√10)=0.3*√10 tgx1=sinx1/cosx1=(1/√10)/(-3/√10)=-1/3; ctgx1=-3 tgx2=sinx2/cosx2=0.3*√10/(-1/√10)=-3; ctgx2=-1/3
1)Найдем дискриминант квадратного уравнения D=b(кв)-4ac=3(кв)-4*1*(-28)=9+112=121 Так как дискриминант больше нуля, то уравнение имеет два действительных корня: x1=(-3-(корень)121)/2*1=(-3-11)/2=-14/2=-7 x2=(-3+(корень)121)/2*1=(-3+11)/2=8/2=4
2)Найдем дискриминант квадратного уравнения D=b(кв)-4ac=-2(кв)-4*2*(-8)=4+64=68 Так как дискриминант больше нуля, то уравнение имеет два действительных корня: x1=(2-(корень)68)/2*2=0,5-0,5*(корень)17~=-1,56155 x2=(2+(корень)68)/2*2=0,5+0,5*(корень)17~=2,56155
3)найдем дискриминант D=b(кв)-4ac=-5(кв)-4*1*6=25-24=1 Т.к. дискриминант больше нуля, то уравнение имеет два действительных корня x1=(5-(корень)1)/2*1=(5-1)/2=4/2=2 x2=(5+(корень)1)/2*1=(5+1)/2=6/2=3 ax(кв)+bx+c=a(x-x1)(x-x2) Отсюда x(кв)-5x+6=(x-2)(x-3)
4)найдем дискриминант D=b(кв)-4ac=-1(кв)-4*(-6)*1=1+24=25 Т.к. дискриминант больше нуля, то уравнение имеет два действительных корня x1=(1-(корень)25)/2*(-6)=(1-5)/-12=-4/-12=1/3 x2=(1+(корень)25)/2*(-6)=(1+5)/-12=6/-12=-1/2 ax(кв)+bx+с=a(x-x1)(x-x2) Отсюда -6x(кв)-x+1=-6(x-1/3)(x+1/2)
2.cos^2a+sin^a-5=1-5=-4
7^-1/3:49^-2/3=1/7^1/3 * 49^2/3 = (49*7)^1/3=7
3,Нужно использовать формулу разности синусов двух углов - в числителе, и формулу разности косинусов двух углов в знаменателе. Чтобы не запутаться, я сделаю преобразования отдельно.
1) (sina-sin5a)-2cos3a=2sin(a-5a)/2*cos(a+5a)/2-2cos3a=2sin(-2a)*cos3a-2cos3a=
-2sin2a*cos3a-2cos3a=-2cos3a(sin2a+1).
2) (cosa-cos5a)+3sin3a=-2sin(a+5a)/2*sin(a-5a)/2+2sin3a=-2sin3a*sin(-2a)+2sin3a=
2sin3a*sin2a+2sin3a=2sin3a(sin2a+1).
3) Скобка в числителе и знаменателе сокращается и остается -2cos3a/2sin3a=-ctg3a.