Я не пойму если это mV в какой-то степени и 2=Е2, то так.. 1) mV^2=E2 V^2=E2\m V^=E2\m\2 V=√V^ ...а если ты имеешь в виду что V в степени 2, то так... mV^2=E2 V^2=E2/m V=√V^ 2)p=m(2t-5q) m=p/2t-5q 2t-5q=m\p 2t=m/p+5q. 5q=m/p-2t t=m/p+5q/2. q=m/p-2t/5
Для приведенного квадратного уравнения (т.е. такого, коэффициент при x² в котором равенединице) x² + px + q = 0 сумма корней равна коэффициенту p, взятому с обратным знаком, апроизведение корней равно свободному члену q:
В случае неприведенного квадратного уравнения ax² + bx + c = 0:
x1 + x2 = -b / a x1 · x2 = c / aТеорема Виета хороша тем, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные выражения x1 + x2 и x1 · x2. Так, еще не зная, как вычислить корни уравнения x² – x – 1 = 0, мы, тем не менее, можем сказать, что их сумма должна быть равна 1, апроизведение должно равняться –1.Теорема Виета позволяет угадывать целые корни квадратного трехчлена. Так, находя корни квадратного уравнения x² – 5x + 6 = 0, можно начать с того, чтобы попытаться разложить свободный член (число 6) на два множителя так, чтобы их сумма равнялась бы числу 5. Это разложение очевидно: 6 = 2 · 3, 2 + 3 = 5. Отсюда должно следовать, что числа 2 и 3 являются искомыми корнями.
V=корень2E/m