Пусть первая бригада выполняет за смену х деталей, вторая бригада у деталей, третья бригада z - деталей. Тогда за смену три бригады выполняют вместе х+у+z=100 деталей (1). По условию у-х=5 и у-z=15. По-другому х=у-5 и z=y-15. Подставим в первое уравнение эти значения вместо х и z, получим у-5+у+y-15=100 3у-20=100 3у=100+20 3у=120 у=120:3 у=40 деталей в смену изготавливает вторая бригада. х=у-5=40-5=35 деталей в смену изготавливает первая бригада. z=у-15=40-15=25 деталей в смену изготавливает третья бригада. Проверка х+у+z=35+40+25=100. Всего 100 деталей изготавливают три бригады.
ответ: 35 деталей в смену изготавливает первая бригада, 40 деталей в смену изготавливает вторая бригада, 25 деталей в смену изготавливает третья бригада.
Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид
( a + b ) n = ∑ k = 0 n ( n k ) a n − k b k = ( n 0 ) a n + ( n 1 ) a n − 1 b + ⋯ + ( n k ) a n − k b k + ⋯ + ( n n ) b n (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n где ( n k ) = n ! k ! ( n − k ) ! = C n k {n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты, n n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
====================