Для решения задачи необходимо определить производительность работы каждой из труб.
Представим весь объем воды в бассейне в виде 100% или 1.
В таком случае, за 1 час работы первая труба наполнит:
1 / 10 = 1/10 часть бассейна.
Вторая труба наполнит:
1 / 8 = 1/8 часть бассейна.
Находим продуктивность работы двух труб при совместной работе.
Для этого суммируем продуктивность каждой трубы.
1/10 + 1/8 = (Общий знаменатель 40) = 4/40 + 5/40 = 9/40.
В таком случае, после 1 часа совместной работы останется наполнить:
1 - 9/40 = 31/40 часть бассейна.
Точка минимума -8
Объяснение:
Чтобы найти точку минимума мы сначало приравняем производную этой функции на ноль и находим критические точки:
y'=((x+8)^2*e^x)'-(3)'=((x+8)^2)'*e^x+(e^x)'*(x+8)^2; используя таблицу формул производных получим e^x(x^2+18x+80)=0, так как e^x всегда положительна можем разделить уравнение на е^x, получим окончательный вид уравнения х^2+18x+80=0, а это квадратное уравнение; решив это уравнение получим корни x1=-10 и x2=--8;
эти точки расчитываем на интервале и узнав положительность и отрицательность интервала; и получим +.-.+ где минимумом функции является точка в интервале -.+; а это точка -8.