М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
star0602
star0602
01.05.2021 03:08 •  Алгебра

Somebody says something toy you which is not what you expected. use you own ideas to complete your answers. a: sarah gets on fine with paul. b: does she? last week you said each other.

👇
Ответ:
Lika4072004
Lika4072004
01.05.2021
Это же не .. completely
4,7(40 оценок)
Открыть все ответы
Ответ:
Qwerty23459484
Qwerty23459484
01.05.2021

\frac{3x^{2}e^{x^{3}}+3x^{7}e^{x^{3}}-5x^{4}e^{x^{3}}}{x^{10}+2x^{5}+1}

Объяснение:

y=\frac{e^{x^{3}}}{1+x^{5}};

Производная дроби находится по следующей формуле:

(\frac{u}{v})'=\frac{u'v-uv'}{v^{2}};

y'=(\frac{e^{x^{3}}}{1+x^{5}})';

y'=\frac{(e^{x^{3}})' \cdot (1+x^{5})-e^{x^{3}} \cdot (1+x^{5})'}{(1+x^{5})^{2}};

Функция

e^{x^{3}}

является сложной функцией. Производная сложной функции находится по следующей формуле:

(f(g(x)))'=f'(g(x)) \cdot g'(x),

отсюда получаем

(e^{x^{3}})'=(e^{x^{3}})' \cdot (x^{3})';

Если ввести замену

t=x^{3},

то выражение

e^{x^{3}}

преобразуется как

e^{t}.

Производная последнего выражения является табличным значением:

(e^{t})'=e^{t};

Возвращаясь к замене, получаем:

e^{x^{3}}.

Производная второго множителя находится по следующей формуле:

(x^{\alpha})'=\alpha x^{\alpha-1}, \quad \alpha \in \mathbb {R}.

(x^{3})'=3x^{3-1}=3x^{2};

Подставим полученные значения в произведение:

(e^{x^{3}})'=e^{x^{3}} \cdot 3x^{2}=3x^{2}e^{x^{3}};

Подставим значение этой производной в дробь:

y'=\frac{3x^{2}e^{x^{3}} \cdot (1+x^{5})-e^{x^{3}} \cdot (1+x^{5})'}{(1+x^{5})^{2}};

Производная суммы равна сумме производных:

(u+v)'=u'+v';

(1+x^{5})'=1'+(x^{5})';

1 — константа. Производная константы равна нулю.

(1+x^{5})'=0+(x^{5})'=5x^{5-1}=5x^{4};

y'=\frac{3x^{2}e^{x^{3}} \cdot (1+x^{5})-e^{x^{3}} \cdot 5x^{4}}{(1+x^{5})^{2}};

y'=\frac{3x^{2}e^{x^{3}}+3x^{7}e^{x^{3}}-5x^{4}e^{x^{3}}}{(1+x^{5})^{2}};

y'=\frac{3x^{2}e^{x^{3}}+3x^{7}e^{x^{3}}-5x^{4}e^{x^{3}}}{x^{10}+2x^{5}+1};

4,7(55 оценок)
Ответ:
kceniakey
kceniakey
01.05.2021

Промежутки знакопостоянства — такие промежутки на области определения, в которых значения функции сохраняют свой знак.

1. Нули функции- это значения аргумента при которых функция равна нулю. Для нахождения их надо функцию приравнять к нулю и решить это уравнение.

2. Это числовые промежутки, на которых функция сохраняет свой знак (т.е. остается положительной или отрицательной), называются промежутками знакопостоянства функции.

3. Возрастающая функция - это функция, при которой большему значению аргумента (х) соответствует большее значение функции (y).

4. Убывающая функция - это функция, при которой большему значению аргумента (х) соответствует меньшее значение функции (у).

5. Это функция, при которой большему значению аргумента (х) соответствует большее значение функции (y)

6. Функция, значения которой по мере увеличения аргумента уменьшаются

4,8(10 оценок)
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ