Для решения задачи необходимо определить производительность работы каждой из труб.
Представим весь объем воды в бассейне в виде 100% или 1.
В таком случае, за 1 час работы первая труба наполнит:
1 / 10 = 1/10 часть бассейна.
Вторая труба наполнит:
1 / 8 = 1/8 часть бассейна.
Находим продуктивность работы двух труб при совместной работе.
Для этого суммируем продуктивность каждой трубы.
1/10 + 1/8 = (Общий знаменатель 40) = 4/40 + 5/40 = 9/40.
В таком случае, после 1 часа совместной работы останется наполнить:
1 - 9/40 = 31/40 часть бассейна.
Объяснение:
Постройте график функции y = 3x – 2.
Пользуясь графиком, найдите:
1) значение функции, если значение аргумента равно 2;
2) значение аргумента, при котором значение функции равно -5.
y = 3x – 2
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у -5 -2 1
1)Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х=2
у=3*2-2=4 у=4 при х=2
2)Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
у= -5
-5=3х-2
-3х= -2+5
-3х=3
х= -1 у= -5 при х== -1
в нашем случае как раз пример чётной функции: Сos(-x) = Cosx
x⁴ - x ² +1 = (-x)⁴ - (-x)² +1