Пусть первое число равно n, тогда последнее равно n+8. Сумма всех чисел S=9n+1+2+...+8. S=9n+8⋅92=9n+36 - делится на 9 (достаточно и необходимое условие на данное выражение). По условию S=a1020304, где a - некоторое целое число (возможно 0), написанное в десятичном виде. Сумма цифр, кроме a, равна 1+2+3+4=10. По признаку делимости на 9, сумма цифр должна делится на 9. Следовательно, сумма цифр S не меньше 18, а сумма цифр a не меньше 8. Пусть a=8⇒S=81020304 S=81020304=9n+36=9(n+4), n+4=9002256⇔n=9002252. Понятно, что если a будет состоять из двух цифр или больше, то S будет больше. Получили искомое наименьшее число.
Чтобы доказать, что треуг равноб, нужно найти длины всех трех сторон: координаты стороны АВ (из конца вычитаем начало) : (2-(-6); 4-1)=(8;-3) АВ= корень квадратный из (восемь в квадрате плюс (минус три в квадрате) = корень квадратный из семидесяти трех аналогично все остальные стороны ВС=(2-2;-2-4)=(0;-6) длина ВС = корень квадратный из (ноль в квадрате плюс (минус шесть в квадрате)) = корень из 36 = 6 АС=(2-(-6);-2-1)=(8;-3) АС=корень квадратный из суммы квадратов координат получаем, что и длина АС равна корень из 75 АВ=АС, то есть треуг равноб
√57кв/57кв
√1кв
1кв