Рассмотрим один из алгебраических решения системы линейных уравнений, метод подстановки. Он заключается в том, что используя первое выражение мы выражаем y , а затем подставляем полученное выражение во второе уравнение, вместо y. Решая уравнение с одной переменной, находим x , а затем и y.
Например, решим систему линейных уравнений.
3x – y – 10 = 0 ,
x + 4y – 12 = 0 ,
выразим y ( 1-ое уравнение ),
3x – 10 = y ,
x + 4y – 12 = 0 ,
подставим выражение 3x – 10 во второе уравнение вместо y ,
Например: {5x+y=14 {2x-3y=9 В первом уравнении выразим y, и получаем y=14-5x. Теперь подставляем во второе уравнение и дальше решаем уравнение 2x-3(14-5x)=9 2x-42+15x=9 2x+15x=42+9 17x=51 x=51/17=3
еще пример: выразим во втором уравнении y, y=7-x подставляем в первое:
Вариант 1. Они встретились, когда еще 1 часа не с момента старта. После встречи они разъехались и к моменту 1 час расстояние было 3 км, а к моменту 2 часа 14 км. Значит, они за 1 час в сумме 14 - 3 = 11 км. При этом они за первый час расстояние АВ и еще 3 км. Значит, АВ = 8 км. Второй вариант. За первый час они еще не встретились. Расстояние было 3 км. За второй час они встретились и разошлись дальше на 14 км. Значит, за 1 час они в сумм км. Но за первый час они не дошли друг до друга 3 км. Расстояние АВ = 17 + 3 = 20 км.
Как решать системы неравенств: По сути, решением неравенства является некоторое множество значений над R (в школьном случае). Решение системы двух неравенств есть пересечение решений двух неравенств т.е. двух этих множеств. Отсюда вытекает технология решения таких систем: 1) Находим решение одного из неравенств отдельно. 2) Находим решение второго неравенства. 3) Пересекаем решения. Примерчик: Дана система 1) Решаем второе неравенство (оно удобнее) Т.е. это множество (b+d;+inf). 2) Решаем первое неравенство. Это множество (-inf;c-a). Пересекаем их. Тут на самом деле зависит от значений a,b,c,d - но по сути: 1) Если c-a>b+d тогда решение системы (b+d;c-a) 2) Если c-a<b+d тогда система не имеет решения над R. 3) Если c-a=b+d: так как неравенство строгое, то снова - решений нет. Если бы было нестрогое - решением бы было c-a ну или b+d - все равно. Теперь ваше задание (практика). Решаем второе неравенство. 1) [-2;+inf) 2) Теперь первое. Хитрое неравенство. Квадрат всегда больше нуля, зато может быть равен: Единственное значение, таким образом. Пересекаем. Получаем как раз x=2. Это и ответ.
линейных уравнений, метод подстановки. Он заключается в том, что
используя первое выражение мы выражаем y , а затем подставляем
полученное выражение во второе уравнение, вместо y. Решая уравнение
с одной переменной, находим x , а затем и y.
Например, решим систему линейных уравнений.
3x – y – 10 = 0 ,
x + 4y – 12 = 0 ,
выразим y ( 1-ое уравнение ),
3x – 10 = y ,
x + 4y – 12 = 0 ,
подставим выражение 3x – 10 во второе уравнение вместо y ,
y = 3x – 10 ,
x + 4 • ( 3x – 10 ) – 12 = 0 ,
найдем x , используя полученное уравнение,
x + 4 • ( 3x – 10 ) – 12 = 0 ,
x + 12x – 40 – 12 = 0 ,
13x – 52 = 0 ,
13x = 52 ,
x = 4 ,
найдем y , используя уравнение y = 3x – 10 ,
y = 3x – 10 ,
y = 3 • 4 – 10 ,
y = 2 .
О т в е т : ( 4; 2 ) — решение системы.