В решении.
Объяснение:
Пароход проплыл 60 км по течению реки, а затем 20 км против течения и потратил на весь путь 7 часов. Какова собственная скорость парохода, если скорость течения реки 1 км/час?
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - собственная скорость парохода.
(х + 1) - скорость парохода по течению.
(х - 1) - скорость парохода против течения.
60/(х + 1) - время парохода по течению.
20/(х - 1) - время парохода против течения.
Время в пути 7 часов, уравнение:
60/(х + 1) + 20/(х - 1) = 7
Умножить уравнение на (х + 1)(х - 1), чтобы избавиться от дробного выражения:
60 * (х - 1) + 20 * (х + 1) = 7 * (х + 1)(х - 1)
Раскрыть скобки:
60х - 60 + 20х + 20 = 7х² - 7
Привести подобные члены:
-7х² + 80х - 40 + 7 = 0
-7х² + 80х - 33 = 0/-1
7х² - 80х + 33 = 0, квадратное уравнение, ищем корни.
D=b²-4ac = 6400 - 924 = 5476 √D= 74
х₁=(-b-√D)/2a
х₁=(80-74)/14
х₁=6/14
х₁=3/7, отбрасываем, как не отвечающий условию задачи.
х₂=(-b+√D)/2a
х₂=(80+74)/14
х₂=154/14
х₂=11 (км/час) - собственная скорость катера.
Проверка:
60 : 12 = 5 (часов) - по течению.
20 : 10 = 2 (часа) - против течения.
5 + 2 = 7 (часов) - в пути, верно.
Даны точки A(-1;4), B(3;1), C(3,4). Найдите вектор c= 2 CA+3ABОбозначим точку пересечения плоскости β отрезком CD буквой О.
DD1║CC1, CD- секущая, ⇒ накрестлежащие ∠D=∠C, вертикальные углы при О равны, ⇒ ∆ DOD1 подобен ∆ COC1 по первому признаку.
k=CC1:DD1=6/√3:√3=2
Тогда СО=2DO=²/₃ СD
ЕО=СО-СЕ
EO= \frac{2}{3} CD- \frac{1}{2} CD= \frac{1}{6} CDEO=
3
2
CD−
2
1
CD=
6
1
CD
∆ COC1 подобен ∆ EOE1 по первому признаку подобия ( ∠С=∠Е - соответственные при пересечении параллельных прямых ЕЕ1 и СС1 секущей CD, угол О - общий).
k= \frac{CO}{EO} = \frac{ \frac{2}{3} CD}{ \frac{1}{6} CD}= \frac{2*6}{3}= 4k=
EO
CO
=
6
1
CD
3
2
CD
=
3
2∗6
=4 ⇒
E E_{1}= \frac{6}{ \sqrt{3}}:4= \frac{6* \sqrt{3} }{ \sqrt{3}* \sqrt{3} *4}= \frac{ \sqrt{3}}{2} smEE
1
=
3
6
:4=
3
∗
3
∗4
6∗
3
=
2
3
sm
y=x-(6/x)+14 = (x² - 6 +14x)/x = ( x² +14x -6)/x
наш план действий:
1) ищем производную.
2) приравниваем её к нулю и решаем . какие корни попадают в указанный промежуток.
3)решаем получившееся уравнение
4) находим значения данной функции в найденных корнях и на концах промежутка
5) пишем ответ
Начали?
1) y' = (2x +14 -x² -14x +6)/x² = (-x²-12x +20)/x²
2) (-x²-12x +20)/x² = 0, ⇒ (-x²-12x +20) = 0,⇒ x² +12x -20 = 0
x ²≠ 0
x² +12x -20 = 0
х = -6 +-√56 ≈ - 6 +- 7,4...
х₁≈ -6 +7,4... = 0,4...
х₂≈ - 6 -7,4... = -13,4...
3) ни один корень в указанный промежуток не попал.
4) х = 0,5
у = ( x² +14x -6)/x = (0,25 +7 -6)/0,5 = 1,25/0,5 = 2,5
х = 19
у = ( x² +14x -6)/x = (361 + 266 -6)/19= 33
5) ответ: min y = y(0,5) = 2,5