4(3-a-b)-(2-b)²-(1-2a)². Наибольшего значения выражение достигает, когда будем отнимать от 4(3-a-b) нули, т.к. чем больше отнимаешь, тем меньше остается, отнять отрицательное число не получится, т.к. отнимают квадраты разностей двух выражений, значит, самым маленьким значением будут нули, т.е. (2-b)²=0, это возможно, когда b=2. (1-2a)²=0, когда а =0.5.
Просчитаем значение оставшегося выражения 4(3-a-b) при указанных а =0.5 и b=2. Получим 4(3-0.5-2)=4*0.5=2, это и будет наибольшее значение выражения.
ОТВЕТ 2
Для решения неравенства методом интервалов будем выполнять следующие шаги
1) найдем корни уравнения уравнения
(x+3)(x-4)(x-6)=0
произведение равно нуля когда любой из множителей равен нулю
х+3=0 или х-4=0 или х-6=0
тогда х= -3 или х= 4 или х=6
2) Нарисуем числовую ось и отметив полученные точки
-3 4 6
3) в каждом из полученных промежутков определим знак нашего выражения
при х< -3 проверим для точки х= -5
(-5+3)(-5-4)(-5-6)=(-)(-)(-) <0
при -3<x<4 проверим для точки х=0
(0+3)(0-4)(0-6)=(+)(-)(-)>0
при 4<x<6 проверим для точки х=5
(5+3)(5-4)(5-6)=(+)(+)(-)<0
при x>6 проверим для точки х=10
(10+3)(10-4)(10-6)= (+)(+)(+)>0
4) расставим полученные знаки над промежутками
--3+4-6__+
5) и теперь осталось выбрать промежутки где стоит знак "минус"
( по условию <0)
Запишем полученные промежутки (-∞; -3) ∪(4;6)
12-4а-4b-(4-4b+b^2)-(1+4a+4a^2)=12-4a-4b-4+4b-b^2-1+4a-4a^2=7-b^2-4a^2
подпишись если не сложно)