М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
salazarcpt
salazarcpt
08.02.2023 22:41 •  Алгебра

3х-5(под ним 2) < 3(х+1)-5(под ними 2)

👇
Ответ:
store1488
store1488
08.02.2023
Если под ними- это делить то вот
3х-5-3х-3+5<0
-8+5<0
-3<0
4,6(100 оценок)
Открыть все ответы
Ответ:
bosiy01
bosiy01
08.02.2023
Воспользуемся равенством

tg α – tg β = tg (α – β) (1 + tg α tg β).

Получаем:

tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.

С первым понятно, что делать. Второе:

tg 2x tg 4x = –2,

tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.

Это равенство невозможно.

Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
4,8(19 оценок)
Ответ:
VikaGrin1
VikaGrin1
08.02.2023
ОДЗ :    х² - 5х - 23 ≥ 0
             2х² - 10х - 32 ≥ 0
Решение системы двух неравенств не так  просто, поэтому при нахождении корней достаточно сделать проверку.
Подставить корни в систему неравенств или подставить корни в уравнение

Так как
2х²-10х-32=2(х²-5х-16)
то применяем метод  замены переменной

х²-5х-23=t    ⇒   x²-5x=t+23
x²-5x-16=t+23-16=t+7

Уравнение примет вид
√t + √2·(t+7)=5

или

√2·(t+7) = 5 - √t

Возводим обе части уравнения в квадрат
При этом правая часть должна быть положительной или равной 0
(  (5 - √t)≥0    ⇒√ t ≤ 5    ⇒  t ≤  25)

2·( t + 7) = 25 - 10 √t + t

или

10·√t = 25 + t - 2t - 14

10·√t = 11 - t

Еще раз возводим в квадрат, при условии, что 11 - t ≥ 0    t ≤ 11
Получаем уравнение

100 t = 121 - 22 t + t², при этом    t ≤ 11

t² - 122 t + 121 = 0

D=122²-4·121=14884 - 484 = 14400=120

t₁=(122-120)/2= 1     или    t₂= (122+120)/2 = 121  не удовлетворяет                                                          условию ( t ≤ 11)

возвращаемся к переменной х:

х² - 5х - 23 = 1         

х² - 5х - 24 = 0         
D=25+96=121=11²             
x₁=(5-11)/2=-3                      
х₂=(5+11)/2=8                      

Проверка
х = - 3         √(9 +15 - 23) + √2·(9 +15 - 16) = 5 - верно    1+4=5

х = 8            √(64 - 40 - 23) + √2·(64-40 -16) = 5 - верно    1+4=5

ответ. х₁=-3    х₂=8

Объясните, как решать подобные уравнения. желательно так подробно, насколько это возможно. буду приз
4,7(50 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ