Переобразуйте данное целое выражение в произведении многочленов: к)(x-y)*(4x-6y)+(x+1)*(18y-12x)=(x-y)*(4x-6y)-(x+1)*3(4x-6y)=2(2x-3y)(x-y-3x-3)=2(2x-3y)(-2x-y-3)=-2(2x-3y)(2x+y+3) c)2a(a+2)^2-3b(a+2)=(a+b)(2a(a+b)-3b)=(a+b)(2a^2+2ab-3b) Разложите выражение на множители, используя формулы сокращённого умножения: б)(a-b)^2-c^2=(a-b+c)(a-b-c) н)(a+b)^2-(x+y)^2=(a+b+x+y)(a+b-x-y) e) (m^2-4n)^2-(m^2-2n)^2=(m^2-4n+m^2-2n)(m^2-4n-m^2+2n)=2(m^2-3n)*(-2n)=-4n(m^2-3n) d)(x-2y)^2+4(x-2y)+4=(x-2y+2)^2 z)16m^2-8m(3-m)+(3-m)^2=(4m-3+m)^2=(5m-3)^2 Представьте целое выражение в виде произведения многочленов: д)ax-ya+x-y=x(a+1)-y(a+1)=(a+1)(x-y) о)a^3+5a^2+5a+25=a^2(a+5)+5(a+5)=(a+5)(a^2+5)
Пусть за (х) дней одна работу может выполнить Катя за (у) дней одна работу может выполнить Алиса, x < y тогда за 1 день Катя может выполнить (1/х) часть работы, за 1 день Алиса может выполнить (1/у) часть работы. (1/х) + (1/у) = 1\6 0.6*х + 0.4*у = 12 система (х+у) / (ху) = 1/6 6х + 4у = 120
6х + 6у = ху 6х = 120 - 4у
6*(120 - 4у + 6у) = (120 - 4у)*у 6*120 + 12у = 120у - 4у² у² - 27у + 180 = 0 по т.Виета корни 12 и 15 у = 12, тогда х = (120 - 48)/6 = 20-8 = 12 у = 15, тогда х = (120 - 60)/6 = 20-10 = 10 ответ: за 10 дней может напечатать курсовую Катя, т.к. она печатает быстрее Алисы.