Объяснение:
Пусть ограничений нет. Тогда число переставить буквы в слове СССМП равно 9!4!3!1!1!=2520 (перестановки с повторениями).
Предположим, что все 4 буквы И идут подряд. Тогда можно из них образовать новый "комбинированный" символ [И], и получится набор символов СССМП[И], откуда по той же формуле число перестановок окажется равно 6!/3!=120.
Теперь объединим в новый "символ" 3 буквы И, а одну оставим в стороне. "Символов" станет 7, из них С встречается 3 раза, а остальные по одному. Перестановок получается 7!/3!=840. Каждое из 120 буквосочетаний, в котором все 4 буквы И следуют подряд, учитывается два раза: когда мы группируем первые три, и когда группируем последние три буквы И из четырёх. Значит, расположений с тремя И подряд будет 840−120=720, так как 120 были учтены два раза вместо одного.
Окончательно получается 2520−720=1800.
у= (-1/3)·x+7
Объяснение:
1) По условию график искомой линейной функции параллелен к функции у= (-1/3)·x+8 и поэтому угловой коэффициент равен к (-1/3). Тогда формула искомой линейной функции имеет вид
у= (-1/3)·x+b, b - пока неизвестно.
2) График искомой линейной функции проходит через точку А(6;5). Если график функции проходит через некоторую точку, то координаты этой точки должны удовлетворить уравнение функции. Поэтому подставляем координаты точки А в уравнение функции и находим b:
5 = (-1/3)·6 + b
5 = - 2 + b
b = 7.
Уравнение искомой функции: у= (-1/3)·x+7.
y'=6x²+18x-24=6(x²+3x-4)