1. 1)Преобразует левую часть уравнения так, чтобы получился квадрат выражения с х. х^2-4х+3=0, (х^2-2*(2*х)+4)-4+3=0, (х-2)^2-1=0, (х-2)^2=1, х-2=1 или х-2=-1, х=3 или х=1. 2) представим левую часть в виде произведения: х^2+9х=0, х(х+9)=0, х=0 или х=-9. 2. Подставим в уравнение известный корень и найдем а: 4^2+4-а=0, 16+4-а=0, а=20. Разложим левую часть на множители, зная что один из них (х-4): х^2+х-20=х2-4х+4х+х-20=х(х-4)+5х-20=х(х-4)+5(х-4)=(х-4)(х+5), то есть (х-4)(х+5)=0, второй корень х=-5. ответ: а=20, второй корень (-5). Во втором задании можно просто подставить а и решить уравнение, найдя 2 корня.
Будем считать, что это Пи.
y = 12√2*cos x + 12x - 3pi + 9
Значения на концах отрезка [0; pi/2]
y(0) = 12√2*cos 0 + 12*0 - 3pi + 9 = 12√2 - 3*pi + 9 ≈ 16,546
y(pi/2) = 12√2*cos(pi/2) + 12*pi/2 - 3pi + 9 = 12√2*0 + 6pi - 3pi + 9 ≈ 18,425
Экстремумы - это точки, в которых производная равна 0.
y ' = 12√2*(-sin x) + 12 = 12(-√2*sin x + 1) = 0
1 - √2*sin x = 0
sin x = 1/√2
x1 = pi/4 + 2pi*k
x2 = 3pi/4 + 2pi*k
Единственное значение, принадлежащее отрезку [0; pi/2]:
x = pi/4
y(pi/4) = 12√2*cos(pi/4) + 12*pi/4 - 3pi + 9 = 12√2*1/√2 + 3pi - 3pi + 9 = 21
ответ: максимальное значение y(pi/4) = 21