2ая пусть числитель-х, а знаменатель у, тогда дробь - х/у
из первого условия видим у=х+4
из второго х+2/у+21=х/у - 1/4
решаем ситему в усё
1ая возьмем время работы слесаря за х, а работу возьмем за 1, и просто не будем указывать значение единицы(можно взять и у, она просто сократится, а так эта единица может просто быль равна 49395 деталей)
получается производительность слесаря 1/х
время 1го ученика х+2 (из условия) и производительность 1/(х+2)
время 2го ученика х+8(тоже из условия) и производительность 1/(х+8)
так как они могут выполнить заказ за одно и тоже время, то
1(работа)/(1/х)(производительность) = 1(работа)/(1/(х+2) +1/(х+8))(сумма их производительностей, так как вместе работают)
1/(1/х)=1/(1/(х+2) +1/(х+8))
решаем, ответ х, х+2, х+8
16(x^2 - 4x + 4) - 64 - 9(y^2 + 6y + 9) + 81 = 161
16(x - 2)^2 - 9(y + 3)^2 = 16
(x - 2)^2 - (y + 3)^2 / (16/9) = 1
Это гипербола с центром A(2; -3) и полуосями a = 1; b = √(16/9) = 4/3
2) y = cos(x + y)
y' = -sin(x + y)*(1 + y') = -sin(x + y) - y'*sin(x + y)
y' + y'*sin(x + y) = -sin(x + y)
y' = - sin(x+y) / (1 + sin(x+y))
3) (1+x^2) dy - 2xy dx = 0
(1+x^2) dy = 2xy dx
dy/y = 2x dx / (1+x^2)
Интегрируем обе части
ln |y| = ln |1+x^2| + ln C
y = C(1 + x^2)
Решаем задачу Коши.
y(-1) = C(1 + (-1)^2) = 2C = 4
C = 2
y = 2(1 + x^2)