график 1 - y= 2/x
y(1) = 2 (1; 2)
y(2) = 1 (2; 1)
y(0.5) = 4 (1/2 ; 4)
y(4) = 0.5 (4 ; 1/2)
y(-1) = -2 (-1; -2)
y(-2) = -1 (-2; -1)
y(-0.5) = -4 (-1/2; -4)
y(-4) = - 0.5 (-4; -1/2)
начерти координатную вот и поставь данные точки. слева и справа у тебя будет плавная дуга.
y = x+1
точки:
(0; 1)
(1; 2)
(-1; 0)
также ставишь точки и соединяешь - получится прямая. она пересечет гиперболу в двух или в одной точке. ищешь координаты и записываешь.
либо:
2/x = x+1
2 = x(x+1)
2 = x^2 + x
x^2 + x - 2 = 0
d = 1 + 8 = 9
x = (-1 + 3) * 0.5 = 1
х = (-1 - 3) * 0.5 = -2
а) x стремится к + бесконечности
б) y=-1,278
в) при х=-0,8 функция равна нулю, при х=0 функция равна минус 1
г) y=-2 пересекает график функции при х=5/6
y=1-5/6x - идёт практически вровень с графиком функции - те же самые квадранты плоскости;
y=(5/6*х)+3 - пересекает график функции (правый верхний и левый нижний квадранты плоскости) при х=-0,417