x(x²-y²)²+y(x²-y²)²=(х²-у²)²(х+у)=((х-у)(х+у))²(х+у)=(x+y)³(x-y)² правая часть равна левой Представьте в виде многочлена: a) (p+k-4)(p+k+4)=(p+k)²-16=p²+2pk+k²-16 б) (a-b+5)(a+b+5)=(a+5)²-b²=a²+10a+25-b² в) (x-y-6)(x+y+6)=x²-(y+6)²=x²-(y²+12y+36)=x²-y²-12y-36 г) (m-n+2)(m+n-2)=m²-(n-2)²=m²-(n²-4n+4)=m²-n²+4n-4
1) x(7 - x) > 0 Умножаем на -1, при этом меняется знак неравенства x(x - 7) < 0 По методу интервалов x ∈ (0; 7)
2) x^2*(3 - x)(x + 1) <= 0 Умножаем на -1, при этом меняется знак неравенства x^2*(x - 3)(x + 1) >= 0 x^2 > 0 при любом x =/= 0. Поэтому x = 0 - это решение. Делим на x^2 (x - 3)(x + 1) >= 0 По методу интервалов x ∈ (-oo; -1] U [3; +oo) Добавим решение x=0 и получим: x ∈ (-oo; -1] U [0] U [3; +oo)
2)0-(-7) = 7+0 =7