10
Объяснение:
2)Теория вероятности, задача простенькая, не понимаю, почему у Вас возникают проблемы с её решением. Начнем.
Кидаются 2 игральные кости. 1) произведение должно быть 5
Рассмотрим все варианты, чтобы произведение было равна 5
1) 1*5
2) 5*1
Есть 2 таких варианта. Сколько же всего возможных комбинаций может выпасть? При первом броске может выпасть 1, 2, 3, 4, 5, 6 т.е. 6 вариантов.
При втором столько же вариантов - 6. Следовательно всего может быть 36 вариантов выпадаения игральных костей.
2/36 = (примерно) 0.06. или можно записать как 1/18
Произведение 4
1) 1*4
2) 4*1
3) 2*2
3 таких варианта. 3/36 = (примерно) 0.083 или можно записать как 1/12
Произведение 10
1) 2*5
2) 5*2
2 таких варианта. 2/36= (примерно) 0.06. или можно записать как 1/18
Произведение 12
1) 6*2
2) 2*6
3) 3*4
4) 4*3
4 таких варианта. 4/36 = 0.11 или можно записать как 1/9.
Подробнее - на -
10
Объяснение:
2)Теория вероятности, задача простенькая, не понимаю, почему у Вас возникают проблемы с её решением. Начнем.
Кидаются 2 игральные кости. 1) произведение должно быть 5
Рассмотрим все варианты, чтобы произведение было равна 5
1) 1*5
2) 5*1
Есть 2 таких варианта. Сколько же всего возможных комбинаций может выпасть? При первом броске может выпасть 1, 2, 3, 4, 5, 6 т.е. 6 вариантов.
При втором столько же вариантов - 6. Следовательно всего может быть 36 вариантов выпадаения игральных костей.
2/36 = (примерно) 0.06. или можно записать как 1/18
Произведение 4
1) 1*4
2) 4*1
3) 2*2
3 таких варианта. 3/36 = (примерно) 0.083 или можно записать как 1/12
Произведение 10
1) 2*5
2) 5*2
2 таких варианта. 2/36= (примерно) 0.06. или можно записать как 1/18
Произведение 12
1) 6*2
2) 2*6
3) 3*4
4) 4*3
4 таких варианта. 4/36 = 0.11 или можно записать как 1/9.
Подробнее - на -
2)y=x^2-2x+3
по плану:
область определения; область значений; четность; периодичность;
нули; наибольшее и наименьшее значение; монотонность;
ограниченность.
y=3x+1 (-∞;∞) обл. опр. (-∞;∞) обл. знач.
ни четная ни нечетная непереодичная нули 3х+1=0 х=-1/3
у'=3 нет макс. или мин. монотонно возрастает.
y=x^2-2x+3 обл. опр (-∞;∞)
y'=2x-2 2x0=2 вершина х0=1 у0=2 обл. знач. [2;∞)
ни четная ни нечетная
непереодичная
нули ф-ии x^2-2x+3=0 D=4-4*3<0 нулей нет
минимум y=2 при х=1 (см.выше)
монотонность 1
y'<0 y'>0
мионотонно убывает на (-∞;1) и монотонно возрастает на (1;∞)
ограниченна снизу у=2