М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
artem861
artem861
15.09.2022 13:55 •  Алгебра

1) запишите конечные десятичные дроби: 0,7 ; 1,4 ; 2,75 в виде обыкновенных дробей. 2) запишите периодическую десятичную дробь в виде обыкновенной: 2,(13) ; 0,4(45)

👇
Ответ:
larion266
larion266
15.09.2022

1)~0,7=\dfrac 7{10};~~~1,4=1\dfrac 4{10}=1\dfrac 25;~~~2,75=2\dfrac {75}{100}=2\dfrac 34\\\\2)~2,(13)=2\dfrac {13}{99}\\\\~~~0,4(45)=0,4+0,0(45)=\dfrac 4{10}+\dfrac {45}{990}=\\\\~~~~~=\dfrac 25+\dfrac 1{22}=\dfrac {44+5}{110}=\dfrac {49}{110}

4,7(36 оценок)
Открыть все ответы
Ответ:
Wild044Rose
Wild044Rose
15.09.2022
Подставим из 1 уравнение у=х-1 во второе
{у=х-1
{х²-2(х-1)=26
Решим 2 уравнение, для этого раскроем скобки, умножая число перед скобками на каждое число, стоящее в скобках:
х²-2х+2=26
Перенесем числа влево и приведем подобные слагаемые, чтобы в правой части остался ноль. 
х²-2х-24=0
Решим квадратное уравнение:
D=b²-4ac, где a число перед x², a=1; b число перед x, b=-2; c свободное число, в нашем случае с=-24
D=4-4*1*(-24)= 4+96=100
x1= (-b+√D)/2a= (2+10)/2=6
x2=(-b-√D)/2a= (2-10)/2=-4
Найдем y1 и y2 подставив в первое уравнение получившиеся x1 и x2:
y1=x1-1=6-1=5
y2=x2-1=-4-1=-5
ответ: (6;5) ; (-4;-5)
4,7(1 оценок)
Ответ:
Пакмен007
Пакмен007
15.09.2022

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

4,6(78 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ