выяяснить сколько решений имеет система 4y-x=12 3y+x=-3 Для определения количества решений достаточно сравнить угловые коэффициенты эти прямыx. Если угловые коэффициенты прямыx y=k1x+b1 и y = k2x+b2 k1 и k2 не равны, то одно решение. Если k1=k2 а также b1=b2 то множество решений так как прямые совпадают. Если k1=k2, но b1 не равно b2 то решений нет. В нашем случае 4y-x=12 или y =(1/3)x+3 k1=1/3 b1=3 3y+x=-3 или y = (-1/3)x-1 k2=-1/3 b2=-1 Так как угловой коэффициент первой прямой равный 1/3 не равен угловому коэффициенту второй прямой -1/3 то система уравнений имеет одно решение.
Пишут все что ошибка,проверим,тут задача строится на 2-х условиях т.е. надо что-то выражать. Рассмотрим оба условия. х-производительность труда первого у- второго 1) Пр.тр Время Объем 1 и 2 раб. (х+у) 2 2(х+у) 2) Пр.тр Время Объем 1 раб. х 2 2х 2 раб. у 1 у Объем в обоих случаях равный(вся работа) 2х+2у=2х+у у=0 Да,да второй получается у нас лентяй =) Значится первый в одиночку работал 2 дня. Других вариантов я не нашел. Какой то Том Сойер получается у нас,кто помнит если дело с забором
1) x ≥ 3
f(x) = -x³ + 3x² - 9x
f'(x) = -3x² + 6x - 9
f'(x) ≥ 0
-3x² + 6x - 9 ≥ 0
3x² - 6x + 9 ≤ 0
x² - 2x + 3 ≤ 0
x² - 2x + 1 ≤ -2
(x - 1)² ≤ -2 - неверное неравенство ⇒ на промежутке [3; +∞) функция убывает
2) x ≤ -3
f(x) = -x³ - 3x² + 9x
f'(x) = -3x² - 6x + 9
f'(x) ≥ 0
-3x² - 6x + 9 ≥ 0
x² + 2x - 3 ≤ 0
x² + 2x + 1 - 4 ≤ 0
(x + 1)² - 2² ≤ 0
(x + 1 - 2)(x + 1 + 2) ≤ 0
(x - 1)(x + 3) ≤ 0
уб воз уб
[-3][1]> x
+ min - max +
Значит, функция убывает на (-∞; -3] и на [1; +∞) (объединяем найденный промежуток в 1 пункте с данным промежутком) и возрастает на [-3; 1].
x₀ = 1 - точка максимума
ymax = y(1) = -1 + 3·1·|1 - 3| = -1 + 3·2 = -1 + 6 = 5.
Точка минимума в промежуток не входит, поэтому ищем значения функции в крайних точках:
y(0) = 0 + 0 = 0
y(4) = -4³ + 3·4·|4 - 3| = -64 + 12·1 = 12 - 64 = -52
ответ: ymax = 5; ymin = -52.