М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
красотуле444ка
красотуле444ка
14.02.2023 15:22 •  Алгебра

Решите уравнение: |x−3|=x+6. сколько корней имеет данное уравнение?

👇
Ответ:
niggaeasyreal
niggaeasyreal
14.02.2023
Бесконечное множество это уравнение может иметь корней.
4,7(3 оценок)
Открыть все ответы
Ответ:
svetakotelniko
svetakotelniko
14.02.2023
Если пристань В выше по течению, то от А до В катер шел против течения.
Скорость катера обозначим v, скорость по течению v+3, против v-3.
AB/(v-3) = 11,5
Если катер не дойдет 100 км до В и повернет обратно в А,
то он придет в А за тоже время, то есть 11,5 часов.
(AB-100)/(v-3) + (AB-100)/(v+3) = 11,5
Получили систему
{ AB = 11,5*(v-3)
{ (11,5*(v-3) - 100)/(v-3) + (11,5*(v-3) - 100)/(v+3) = 11,5
Умножаем всё на (v-3)(v+3)
11,5*(v-3)(v+3) - 100(v+3) + 11,5*(v-3)^2 - 100(v-3) = 11,5*(v-3)(v+3)
11,5*(v^2-6v+9) - 100v - 300 - 100v + 300 = 0
Приводим подобные и умножаем всё на 2
23v^2 - 138v + 207 - 400v = 0
23v^2 - 538v + 207 = 0
D/4 = (b/2)^2 - ac = 269^2 - 23*207 = 67600 = 260^2
v1 = (-b/2 - √(D/4)) / a = (269 - 260)/23 = 9/23 - слишком мало, не подходит.
v2 = (269 + 260)/23 = 529/23 = 23 - подходит.
ответ: v = 23 км/ч
4,4(87 оценок)
Ответ:
AzatDit
AzatDit
14.02.2023
Похоже, последовательность задана такой формулой (типа "рекуррентной")
x_{n+1} ^{} = x_{n} + \frac{1}{ x^{2n} }
то есть,члены последовательности выражены через предыдущие члены
а разность членов последовательности имеет вид
x_{n+1}- x_{n}= \frac{1}{ x^{2n} }

таким образом, каждый член последовательности представляет собой сумму n членов  новой последовательности

x_{n} =1+ \frac{1}{ x^{2} } +\frac{1}{ x^{4} } +\frac{1}{ x^{6} } +...+\frac{1}{ x^{2(n-1)} }

Можно заметить, что этот член равен сумме первых  n членов некоей геометрической прогрессии со знаменателем \frac{1}{ x^{2} }

x_{n} = \frac{(1- x^{2n)} }{(1- x^{2} ) x^{2(n-1)} }

А тут придется остановиться, так как непонятно, чему равен x (без индекса)???

Откуда взялась эта задача? Если можно, дай ссылку на источник.
4,4(54 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ