Объяснение:Число делится на 7, если знакопеременная сумма чисел, образованных тройками его цифр, взятыми с конца (последнее число со знаком +), делится на 7. Наше число, состоящее из 2011 пятёрок делится на 7 в том и только в том случае, если на 7 делится знакопеременная сумма, получаемая следующим образом: десятичную запись числа разбивают на группы по 3 цифры справа налево (у нас будет 670 групп по три пятёрки , самая левая группа будет состоять из одной цифры 1 ) и все полученные числа складывают. (2011:3=670·3+1). Знакопеременная сумма это +-+-+-+-+. Начинать расставлять знаки нужно с конца числа, причём первым, как уже было сказано обязательно должен быть +. Сумма этих 670 групп по ±555 будет равна нулю, т.к получим 335 сумм противоположных чисел (-555+555). То есть получим: 5+555+555-555+555-555+555...-555+555=5+0=5. Результат не делится на 7, значит и наше число не делится на 7.
3+5y+4=3+9y-4y+4=3(1+3y)-4(y-1)
5x+15=5(x+3)
21x-42xy=21x(1-2y)