Если прямая перпендикулярно плоскости, то ее направляющий вектор является нормальным вектором плоскости.
1)Уравнение плоскости через нормальный вектор: , где A, B, C - координаты нормального вектора плоскости N(A,B,C). Уравнение данной плоскости ⇒ N(2,-3,4).
2)Уравнение прямой через точку направляющий вектор: , где - координаты точки M(), через которую проходит прямая, - координаты направляющего вектора S(). По условию S() = N(A,B,C) ⇒ N(2,-3,4) = S(2,-3,4); M(1,-2,3).
Решаем сначала уравнение вида (х^2-9)*(х-6)=0 (x-3)(x+3)(x-6)=0 корни уравнения: x=3, x=-3, x=6 рисуем прямую х и отмечаем эти точки на ней - + - + _____.______.________.___ -3 3 6 и считаешь знаки в каждом промежутке. Для этого подставляем любую точку с этого промежутка в исходное неравенство если x∈(-∞;-3) знак "-" (-4²-9)(-4-6)<0 если x∈(-3;3) знак "+" (2²-9)(2-6)>0 если x∈(3;6) знак "-" (4²-9)(4-6)<0 если x∈(6;+∞) знак "+" (7²-9)(7-6)>0
нам нужны значения, когда неравенство меньше 0, следовательно x∈(-∞;-3) ∪(3;6)
2) 121*3= 363
3) 0.04*56= 2,24