8
Объяснение:
Пусть все наши 14 карточек находится по порядку и не "склеиваются". Тогда поставим между ними знак + и посчитаем сумму
5 + 5 + 5 + … + 5 = 5*14 = 70 < 295 - не получилось.
Наша сумма оказалась слишком маленькая поэтому нам неоюходимо соединять карточки 5 в числа. Ясно, что в 555 соединять не надо - слишком много. Тогда попробуем по порядку:
1 число 55: 55 + 5 + 5 + ... + 5 = 115 < 295 - не попали
2 чисел 55: 55 + 55 + 5 + 5 + ... + 5 = 160 - снова не попали
3 числа 55: 55 + 55 + 55 + 5 + ... = 205 < 295 - опять не то
4 числа 55: 55 + 55 + 55 + 55 + 5 + ... = 250 < 295 - близко, но не то
5 чисел 55: 55 + 55 + 55 + 55 + 55 + 5 + 5 + 5 + 5 = 295 - Получилось!
Тогда посчитаем количество плюсов в примере
55 + 55 + 55 + 55 + 55 + 5 + 5 + 5 + 5
Получим 8 штук - и это ответ!
нужно постараться сделать один (угол) аргумент для тригонометрических функций...
7п/24 = (4п/24)+(3п/24) = (п/6)+(п/8)
и получится, что нужно применить не "разность косинусов", а "косинус суммы"...
cos(7π/24) = cos((п/6)+(п/8)) = cos(п/6)*cos(п/8) - sin(п/6)*sin(п/8) =
= (√3/2)*cos(п/8) - (1/2)*sin(п/8)*
первая скобка будет равна: ((4√3 - 3)*cos(п/8) - 4*sin(п/8))
аналогично со второй скобкой...
5п/8 = (4п/8) + (п/8) = (п/2) + (п/8)
и получится, что нужно применить не "разность синусов", а "синус суммы"...
sin(5π/8) = sin((п/2)+(п/8)) = -cos(п/8) (или формула приведения...)
вторая скобка будет равна: (-3)*(2cos(п/8) + sin(п/8))
и осталось выполнить умножение...