М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
leronchik2003
leronchik2003
28.04.2020 18:51 •  Алгебра

Найдите сумму многочленов (4х+8у)+(23 х+5у)

👇
Ответ:
ангел815
ангел815
28.04.2020
4x+8y+23x+5y=27x+13y. ответ: 27x+13y.
4,7(76 оценок)
Открыть все ответы
Ответ:
gigi24
gigi24
28.04.2020

.

Объяснение:

0

Перенумеруем все города. Для городов i, j направим дорогу из города с меньшим номером в город с большим номером. Тогда при проезде по дорогам мы всегда приезжаем в города с большими номерами, и обратно не возвращаемся.

Из города 1 можно добраться до всех, а из n нельзя выехать. Единственный путь, проходящий все города -- это 1-2-...-n.

Теперь надо показать, что такая конструкция всего одна с точностью до перенумерации городов. Из этого будет следовать, что её осуществить ровно n!.

Для начала можно доказать, что имеется город, из которого нельзя выехать. В противном случае мы можем бесконечно долго путешествовать, и какие-то посещаемые города при этом повторятся. Это значит, что основное условие нарушается. Городу с таким свойством присвоим значение n. Он всего один, так как из остальных городов идут стрелки в n.

Далее применяем индукцию, отбрасывая город n и стрелки в него. Для оставшихся городов формируется (по предположению) единственная нумерация 1,2,...,n-1 такая, что из i в j идёт стрелка <=> i < j. Поскольку n больше всех остальных чисел, после возвращения n-го города на место всё сохранится.

Можно и без индукции. Для каждого города рассмотрим путь максимальной длины по стрелкам, оканчивающийся в данном городе. Длину такого пути ему и сопоставим. Значения могут приниматься от 0 до n-1. При этом они не повторяются: если для двух городов значения равны k, то из одного из них попадаем по ребру в другой, что увеличивает длину до k+1. Таким образом, все значения используются ровно по разу. Увеличивая их на 1, имеем описанную выше нумерацию. Ясно также, что ребро всегда идёт из i в j только при i < j.

4,8(60 оценок)
Ответ:
tankist09056
tankist09056
28.04.2020
A) cos 4x = 0
4x = (p/2) + pk, k принадлежит Z
x = (p/8) + (pk/4), k принадлежит Z
б) sin (x/2 - p/6) +1 = 0
sin (x/2 - p/6) = - 1
x/2 - p/6 = (3p/2) + 2pk, k принадлежит Z
x/2 = (5p/3) + 2pk, k принадлежит Z
x = (10p/3) + 4pk, k принадлежит Z
в) sin (p + t) + cos ((p/2) + t) = корень из 2
- sin t - sin t = корень из 2
- 2sin t = корень из 2
sin t = - (корень из 2)/2
t1 = - (p/4) + 2pk, k принадлежит Z
t2 = (5p/4) + 2pn, n принадлежит Z
г) 2cos^2 x - cos x - 3 = 0
Пусть: cos x = t, t принадлежит [-1;1];
Уравнение: 2t^2 - t - 3 = 0;
D = 1 - 4 • 2 • (-3) = 5^2
t1 = (1 + 5)/(2 • 2) = 6/4 =3/2, 3/2 не принадлежит [-1;1].
t2 = (1 - 5)/(2 • 2) = (-4)/4 = - 1
cos x = - 1
x = p + 2pk, k принадлежит Z
д) (1 + cos x)((корень из 2)sin x - 1) = 0
1 + cos x = 0 или (корень из 2)sin x - 1 = 0
cos x = - 1 или sin x = 1/(корень из 2)
х1 = p + 2pk, k принадлежит Z или х2 = (p/4) + 2pn, n принадлежит Z; x3 = (3p/4) + 2ph, h принадлежит Z
ответ: а) (p/8) + (pk/4), k принадлежит Z;
б) (10p/3) + 4pk, k принадлежит Z;
в) - (p/4) + 2pk, k принадлежит Z; (5p/4) + 2pn, n принадлежит Z;
г) p + 2pk, k принадлежит Z;
д) p + 2pk, k принадлежит Z; (p/4) + 2pn, n принадлежит Z; (3p/4) + 2ph, h принадлежит Z.
4,7(47 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ