Основная теорема алгебры. Уравнение n-го степеня имеет n корней. Иными словами: каков старший степень - столько и корней (действительные и комплексные)
Решим к примеру уравнение в действительных корнях.
Рассмотрим функцию . Эта функция является возрастающей на всей числовой прямой.
Также рассмотрим правую часть уравнения: функцию . Графиком линейной функции является прямой, проходящей через точки (0;6), (-6;0).
графики пересекаются в одной точке, следовательно, уравнение имеет один действительный корень и 6 комплексно-сопряженные корни.
Возьмем теперь к примеру уравнение
Если D>0, то квадратное уравнение имеет два ДЕЙСТВИТЕЛЬНЫХ корня.
Если D=0, то квадратное уравнение имеет два равные корни.
Если D<0, то квадратное уравнение действительных корня не имеет, но имеет два комплексно сопряженных корня.
пусть должно было быть х автобусов, тогда в каждом автобусе должно было ехать х человек, а всех человек было х*х=x^2.
так как десять автобусов и некоторое число болельщиков не было, то автобусов было х-10, а в каждом из них было х+10 человек, всего человек было (x-10)(x+10)=x^2-100
По условию задачи имеем неравенство
x^2<3 000
x^2-100<3000
x^2<3000
x^2<3000+100
x^2<3000
(x>0)
x<корень квадратный (3 000)
наибольшее натуральное число удовлетворяющее последнему неравенству 54
x^2-100=54^2-100=2 816
ответ: 2 816 болельщиков поехало на матч
С = 18,84 м
π = 3,14
Найти S
Решение:
1) С = 2πR;
R = C : 2π
R = 18,84 м : (2 · 3,14) = 3 м - радиус
2) S = πR²
S = 3,14 · 3² = 3,14 · 9 = 28,26 м²
ответ: 28,26 м²