Объяснение:
№1
А) (2х+1)²= 4х²+4х+1
Б) (3а-с)²= 9а²–6ас+с²
В) (а+6)(а-6)= а²–36
Г) (3х-4у) (3х+4у)= 9х²–16у²
№2
А) у²-¼= (у–½)(у+½)
Б) х²+10х+25= (х+5)²
№3
(2х-у)²-4х(х-у)= 4х²–4ху+у²–4х²+4ху= у²
при у= -⅔
(–⅔)²=
ответ:
№4
А) 3(2а-b) (2a+b)= 3(4a²–b²)= 12a²–3b²
Б (х⁴+у³)² = (x^8)+2x⁴y³+(y^6)
В) (а+3b)²-(a-3b)²=(a+3b+a–3b)(a+3b–(a–3b))= a²(a+3b–a+3b)= a²*6b= 6a²b
№5
А) (2а-5)²-(2а-3) (2а+3)=0
(4a²–20a+25)–(4a²–9)=0
4a²–20a+25–4a²+9=0
–20a+34=0
20a=34
a=
a= 1,7
Б) 9с²-25=0
(3c–5)(3c+5)=0
совокупность:
3с–5=0
3с+5=0
совокупность:
3с=5
3с=–5
совокупность:
с=
с=
совокупность:
с=
с=
Объяснение:
Чтобы записать данные нам выражения в виде многочлена, мы должны воспользоваться формулами сокращенного умножения.
Пример №1.
(3c - xy)^2
Данная формула называется квадратом разности.
(a - b)^2 = a^2 - 2ab + b^2 - вот вид данной формулы.
Теперь идем по порядку:
Квадрат первого числа минус удвоенное произведение первого числа на второе плюс квадрат второго числа.
Получаем:
9c^2 - 6cxy + xy^2 - окончательный результат.
Пример №2.
(3 + 5a)(3 - 5a)
Данная формула называется разностью квадратов.
Для того, чтобы решить этот пример, мы берем скобку со знаком минус, и возводим оба числа(стоящие в скобке) в квадрат.
То есть:
3^2 - 5a^2
Или же 9 - 25a^2
Задача решена.
Если есть вопросы - задавай.
6 m^2, кажется