1. Итак, нам нужно понять какая эта функция! Для этого Вспомним, что функция f(x )-называется четной( нечетной), если для любого x∈D(f) и выполняется равенство f(x)=f(-x).
График четной функции симметричен относительно оси .
График нечетной функции симметричен относительно начала координат
Наш пример : y=x²-cos2x
Функция определенна при x∈(-∞;∞) , то есть f(-x)=(-x)²-cos2(-x)=-x²-cos2x=-(x²-cos2x)-функция является четной, т.к cosx-четная функция
2.Нам нужно сравнить два значения sin(-20°) V sin(-85)°, где V- знак сравнения ( птичкой называют)
Итак, sin(-20°)=sin(-10°)+sin30°≈0,1736+0,5≈-0,34
sin(-85°)=sin(-5°)-sin(90°)≈0,0872+1≈0,9999=грубо 1
sin(-20°) > sin(-85°). Есть еще более простой смотри поскольку числа не четные, пусть в место sin(-20°) будет sin(-30°)=-0,5 и sin(-85°) бусть будет sin(-90)=-1 и так -0,5>-1
ответ: 1) y=x²-cos2x- функция четная ; 2)sin(-20°) > sin(-85°)
Надеюсь, твой педагог не такая уш придирчивая. Удачи тебе!
1. ОТВЕТ: например, , поскольку
.
Общий вид первообразных -
2. Докажем, что :
.
Что и требовалось доказать.
3. Общий вид первообразных функции -
, где
- некоторое постоянное число. Если график первообразной проходит через точку
, то это значит, что при подстановке
получим верное равенство:
Искомая первообразная -
ОТВЕТ: Y = x²/2 + 3.
4. Графики функции - во вложении 1. Площадь заданной фигуры заштрихована красным.
Поскольку график функции y = 4x - x² на отрезке [0; 2] располагается как минимум не ниже графика функции y = x² (выполняется неравенство 4x - x² ≥ x²), то площадь будет иметь вид
ОТВЕТ: кв. ед.
5. Графики - во вложении 2. Площадь заданной фигуры заштрихована красным.
Поскольку на отрезке (-2; 2) график функции y = x² - 1 располагается выше графика функции y = x² - 4 (выполняется равенство x² - 1 > x² - 4), то площадь будет иметь вид
ОТВЕТ: 12 кв. ед.
6. Объем выполненной работы A(t) с момента по момент
согласно механическому смыслу определенного интеграла есть значение выражения интеграла
Имеем:
ОТВЕТ: ≈ 760.
Тогда наше уравнение будет иметь вид:
t^2+(2а+6)t+(2a-7)(1-4a)=0
У этого уравнения будут решения тогда, когда дискриминант будет положителен или равен 0
Из этого ограничения находим а