y = x³ - 3x² + 3x - 2,5
Найдём производную :
y' = (x³)' - 3(x²)' + 3(x)' - 2,5' = 3x² - 6x + 3
Приравняем производную к нулю, найдём критические точки :
3x² - 6x + 3 = 0
x² - 2x + 1 = 0
(x - 1)² = 0 ⇒ x = 1
Эта критическая точка принадлежит заданному отрезку. Найдём значения функции в критической точке и на концах отрезка и выберем из них наибольшее .
y(1) = 1³ - 3 * 1² + 3 * 1 - 2,5 = 1 - 3 + 3 - 2,5 = - 1,5
y(- 1) = (-1)³ - 3 * (- 1)² + 3 * (- 1) - 2,5 = - 1 - 3 - 3 - 2,5 = - 9,5
y(2) = 2³ - 3 * 2² + 3 * 2 - 2,5 = 8 - 12 + 6 - 2,5 = - 0,5
ответ : наибольшее значение функции равно - 0,5
Чтобы найти значение а, зная корень уравнения, нужно вместо х подставить данное число, решить уравнение:
а) 5ах = 14 - х; при х = 4;
5а * 4 = 14 - 4;
20а = 10;
а = 10 / 20;
а = 0,5.
ответ: при а = 0,5 корень уравнения будет равняться 4.
б) (2а + 1) * х = - 6а + 2х + 13, при х = - 1;
(2а + 1) * (- 1) = - 6а + 2 * (- 1) + 13;
- 2а - 1 = - 6а - 2 + 13;
- 2а + 6а = 1 - 2 + 13;
4а = 12;
а = 12 / 4;
а = 3.
ответ: при а = 3 корень уравнения будет равняться - 1.
Чтобы найти значение b, зная корень уравнения, нужно вместо х подставить данное число и решить уравнение:
а) 4bx = 84, при х= - 3;
4b * (- 3) = 84;
- 12b = 84;
b = 84 / (- 12);
b = 7.
ответ: при b = 3 корень уравнения будет равняться - 3.
б) (b - 6)х = 6 + 5b, при х = 1;
(b - 6) * 1 = 6 + 5b;
b - 6 = 6 + 5b;
- 6 - 6 = 5b - b;
- 12 = 4b;
b = (- 12) / 4;
b = - 3.
ответ: при b = - 3 корень уравнения будет равняться 1.
надеюсь правильно
Объяснение: