М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kazybekabdrahman0707
kazybekabdrahman0707
12.01.2022 13:32 •  Алгебра

Среднее арифметическое выборки из 15 элементов равно 18 к выборке приписали число чему равно среднее арифметическое

👇
Ответ:
SashaZanevskaya
SashaZanevskaya
12.01.2022
См. фото.............
Среднее арифметическое выборки из 15 элементов равно 18 к выборке приписали число чему равно среднее
4,4(65 оценок)
Открыть все ответы
Ответ:
MrLech
MrLech
12.01.2022

Тангенс угла наклона касательной равен производной в точке касания к графику функции.

tgα = y'(x).

1) y = 0,2x^2 + 2x - 4, A(2; 0,8).

Проверяем - принадлежит ли точка данной функции.

0,2*2² + 2*2 - 4 = 0,8. Да, принадлежит.

Находим производную: y' = 0,2*2x + 2.

y'(2) = 0,2*2*2 + 2 = 2,8.

ответ:  tgα = 2,8.

2) y = -3x^2 - x + 5,  А(-2; -5).

Аналогично проверяем - точка А на кривой (парабола).

y' = -6x - 1,

y'(-2) = -6*(-2) - 1 = 12 - 1 = 11.

ответ: tgα = 11.

3) y = (x^2 - 1)/(x - 5), A(3; 3 2/3). (Ели так дано задание)

В этой задаче сложное решение, так как точка А не лежит на кривой.

Производная : y' = (2x(x - 5) - 1*(x^2 - 1))/(x - 5)^2) = (x^2 - 10x + 1)/((x - 5)^2).

Производная в точке касания хо: (xо^2 - 10xо + 1)/((xо- 5)^2).

Получим уравнение касательной проходящей через точку A(3;3 2/3):

3 2/3 = ((xо^2 - 10xо + 1)/((xо- 5)^2))(3 - хо) + ((xо^2 - 1)/(xо - 5)).

Решение затруднено, так функция - кубическая.

Ориентировочно решение найдено графически в программе ГеоГебра: у = -18,76х + 59,95.

График приведен во вложении.


Найдите tg угла наклона касательной к графику функции y(x), проходящей через точку А 1)y=0.2x^2+2x-
4,6(44 оценок)
Ответ:
matveysandors
matveysandors
12.01.2022

Напомним, что неравенства называются равносильными, если у них совпадают множества решений.

Решим первое неравенство. ОДЗ: x≥2. Если x=2, неравенство превращается в 0>0, поэтому x=2 не входит в ответ. Если x>2, корень из x-2 больше 0, поэтому он не влияет на знак левой части и может быть отброшен. Получается неравенство x-a>0; x>a. Остается пересечь условия x>2 и x>a. Если a<2, решениями первого неравенства служат все x>2, что не совпадает с множеством решений второго неравенства. Если же a≥2, решениями первого неравенства служат все x>a, что совпадает с множеством решений второго неравенства.

Вывод: неравенства равносильны при a≥2

4,8(74 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ