V=(40-X)(64-X)X - функция. найти максимум, х∈(0, 40). найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х она равна 3х²-208х+2560 найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0 1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3= =(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3= =(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16 ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
Найдите допустимые значения, и значения при которых дробь
a³-4a
будет равна нулю.
a²-a-2
* * * * * * * * * * * * * * * * * * * * * * *
решение :
(a³-4a ) / (a²-a-2) = a(a² -2²) / (a+1)(a-2)= a(a -2)(a+2) / (a+1)(a-2) . = a(a+2)/(a+1) , если a≠ 2.
1. ОДЗ : Если знаменатель (a+1)(a-2) ≠ 0 не нуль т.е. a≠ -1 и a≠ 2.
ответ 1 : a ∈(-∞; - 1) ∪ (2 ; ∞) .
2. дробь будет равна нулю :
a(a+2) / (a+1) =0 ;
a = 0 ;
или
a+2 =0⇔ a = - 2 .
ответ 2 : a ={ -2 ;0 } .
Удачи !