Преобразуем исходное выражение, выделив полный квадрат: m^2+9mn+n^2 = (m+n)^2+7mn. По условию (m+n)^2+7mn = 11k, где k - целое. Отсюда (m+n)^2 = 11r и 7mn = 11s, где r и s - целые. Из 7mn = 11s следует, что по крайней мере либо m = 11p, либо n = 11t, где p и t - целые. Предположим, что m = 11p, тогда из (m+n)^2 = 11r следует, что и n = 11t. Значит и m и n оба кратны 11, соответственно их сумма m+n и разность m-n также кратны 11. Тогда m^2-n^2 = (m+n)(m-n) = 11f, где f - целое.
1 уравнение 4x=12+3y x=(12+3y)/4 подставляем значение х 3(12+3y)/4+4y=34, (36+9y)/4+4y=34 умножаем на 4, чтоб избавиться от знаменателя 36+9y+16y=136 9y+16y=136-36 25y=100 y=4
подставляет значение y в х
x=(12+3*4)/4 x=(12+12)/4 x=24/4 x=6
проверка 4*6-3*4=12 3*6+4*4=34
ответ: x=6; y=4
2 уравнение
2y=20+5x y=(20+5x)/2
подставляет y
2x-5(20+5x)/2=-8 2x-(100+25x)/2=-8
чтоб избавиться от знаменателя, умножим на 2 4x-(100+25)=-16 4x-100-25x=-16 4x-25x=-16+100 -21x=84 -x=84/21