3) f(x)= 1. Сначала находим область определения этой функции. Функция задана многочленом, D(f)=R , ну или (-∞;+∞) 2. Находим производную. Применяем формулы (2*²=4x) и x=1 (4*x=4*1=4) Итак: f '(x)=4x-4 3. Приравниваем полученную производную к нулю. f '(x)=0, 4x-4=0, решаем уравнение. 4x=4 x=1 ---⁻---(1)---⁺--- проверка знаков: проверим (+). Подставляем в полученную производную, например, цифру 2 вместо x: 4*2-4=4, число положительное, значит ставим знак плюс. Проверим (-). Подставим -1, -4-4=-8, число отрицательное, значит в интервале минус. Когда минус переходит на плюс, это считается точкой минимума. Наоборот - максимума. У нас минимум. xmin=1
Для того чтобы решать такие уравнения, сначала необходимо найти ОДЗ (область допустимым значений), или те корни, которые обращают знаменатель дроби в нуль. ОДЗ: Дальше, чтобы избавиться от знаменателя, нужно привести дроби к общему знаменателю и умножить на него обе части уравнения: Меняем знак второй дроби, чтобы у нас получилась формула сокращенного умножения, а вследствие и общий знаменатель, и умножаем на него. Решив его по т. Виета путем подбора, получим корни Возвращаемся к ОДЗ и видим, что 2 - посторонний корень, поэтому исключаем его и записываем в ответ -5. ответ: -5
Построим график функций
y = |x+1|
y = |x-2|
Точка пересечения - ответ.
График на фото.
Как можно заметить, x = 0.5
Проверим это
|0.5+1| = |0.5-2|
|1.5|=|-1.5|
1.5 = 1.5