1.√(7-3x)>5 ОДЗ: 7-3х≥0 Возводим обе части неравенства в квадрат: 7-3х> 25; Система: 7-3х≥0; 7-3х >25 равносильна неравенству 7-3х>25; -3x> 25-7; -3x > 18; x< -6. ответ. (-∞;-6). 2. √(2x+1)>-3 неравенство верно при любом х из ОДЗ. ОДЗ: 2х+1 ≥ 0 х ≥ -0,5 О т в е т. [-0,5;+∞) 3. √(3+2x)>=√(x+1) ОДЗ: 3+2х≥0 ⇒ x ≥ -1,5 х+1≥0 ⇒ x ≥-1 ОДЗ: х≥-1 Возводим неравенство в квадрат. 3+2х ≥ х+1; х ≥ -2 ответ с учетом ОДЗ х≥ -1 О т в е т. [-1;+∞)
4. √(8-2x)=<√(6x+15) ОДЗ: 8-2х ≥0 ⇒ х ≤ 4 6х+15≥0 ⇒ х≥-2,5 ОДЗ: - 2,5 ≤ х ≤ 4. Возводим неравенство в квадрат: 8 - 2х ≤ 6х + 15; -2х - 6х ≤ 15 - 8 - 8х ≤ 7 х ≥ -7/8 С учетом ОДЗ: О т в е т. [-7/8;4]
1) В принадлежит, если подставишь в y=-3xвместо х абсциссу точки В, а вместо у ординату точки В.
2) ответ номер 3, у=9, так как он параллелен оси х 3)5х+3·0 -15=0 5х-15=0 5х=15 х=3 точка А(3;0) -точка пересечения графика с осью ох. 4)6x-7y+12=0 вместо у подставляем нуль и считаем, 6х-7·0 +12=0 6х=-12 х=-2 это и есть абсцисса В(-2;0) -точка пересечения графика с осью ох.
раскрываем скобки
2a^2-3a+1-7a^2+5a
приводим подобные члены
-5a^2+2a+1
ответ:-5a^2+2a+1
б.3x (4x^2-x)
раскроем скобки,выполнив умножение на 3ч
12x^3-3x^2
ответ:12x^3-3x^2