Потому что, ваша вероятность 1-0.0025 = 0.9975 это вероятность того, что хотя бы одна батарейка рабочая(т.е. рабочие оба батарейки или одна из них рабочая)
Вероятность того, что оба батарейки нерабочие, равна 0.05*0.05=0.0025, а вероятность того, что одна батарейка рабочая, а вторая не рабочая, равна 2*0,05*0,95=0,095
Вероятность того, что хотя бы одна батарейка нерабочая, равна 0.095+0.0025 = 0.0975
Вероятность того, что обе батарейки рабочие, равна 1-0.0975 = 0.9025
Второй быстрее. Вероятность того, что батарейка рабочая, равна 1-0,05 = 0,95. Тогда вероятность того, что обе батарейки рабочие, равна 0,95*0,95 = 0,9025
a) Да. Например: 1, 3 ___ 2 ___ 4, 5, 6, 7, 8, 9, 16
s1 = 2 s2 = 2 s3 = 55/7
b) Нет. Допустим, что s1=s2=s3=s, причем в первой группе n1 элементов, а во второй n2. Тогда в третьей группе 10-n1-n2 элементов.
Сумма всех элементов равна 61 = n1*s+n2*s+(10-n1-n2)*s
61=s*(n1+n2+10-n1-n2)
61=s*10 ⇒ s=61/10
Т.к. дробь 61/10 несократимая, а сумма элементов каждой группы, очевидно, целая, то сумма элементов в каждой группе не меньше 61, а число элементов не меньше 10. ⇒ Общее число элементов не меньше 30. Так как у нас всего 10 элементов, получаем противоречие.