а) 330
б)
в)
Объяснение:
Буду объяснять каждое задание по отдельности. , Согласен, предыдущие выкладки были неправильными. В силу недопонимания во мною, либо двоякостью постановки во Число сочетаний из x по n равно биномиальному коэффициенту
Сₓⁿ= знак равенства не очень ровно размещён относительно дроби.
5 студентов хотят ехать снизу, а 4 сверху. Размещаем их по пожеланию.
a) Если порядок размещения пассажиров как снизу, так и сверху не учитывается то нет их перестановок.
Разместив пятерых студентов снизу и четырёх сверху имеем 7 свободных мест на верхних и 4 на нижних полках. Далее, нужно разместить 11 студентов с расчётом того что не учитываем их перестановок. Значит кол-во комбинаций равно С₁₁⁷·С₄⁴==8·9·10·11÷(1·2·3·4)=330
Аналогично получим С₁₁⁴С₇⁷=330
С₄⁴ здесь не обязательно. Оставим его для определённости последующих решений.
Складываем оба уравнения, получим:
x² - 2 * x * y + y² = 1.
Разложим по формуле квадрата разности, получим:
(x - y)² = 1,
x - y = 1,
x - y = -1.
Вычитаем из первого системного уравнения второе, получим:
x² - y² = 3.
Разложим как разность квадратов, получим:
(x - y) * (x + y) = 3.
Следовательно, получим две системы уравнений:
1. (x - y) * (x + y) = 3 и x - y = 1,
x + y = 3 и x - y = 1.
Складываем почленно:
2 * x = 4, откуда х = 2,
y = x - 1 = 2 - 1 = 1.
2. (x - y) * (x + y) = 3 и x - y = -1,
x + y = -3 и x - y = -1,
2 * x = -4,
x = -2,
y = x + 1 = -2 + 1 = -1.
ответ: (2; 1) и (-2; -1).
tg(x) >1
π/4 +πn < x <π/2+πn n∈Z