y=x^4-8x^3+10x^2+1 1) Находим производную функции y'=(x^4-8x³+10x²+1)'=4x³-24x²+20x 2)Находим точки, в которых производная равна нулю: 4x³-24x²+20x=0 4x(x²-6x+5)=0 4x(x-1)(x-5)=0 x₁=0 x₂=1 x₃=5 Из полученных значений нам надо оставить лишь те, которые принадлежат заданному промежутку.
1) ОТРЕЗОК [-2;3] 0∈[-2;3] и 1∈[-2;3], a 5∉[-2;3] Значит находим значения функции в полученных стационарных точках из промежутка и на концах промежутка: у(0)=0^4-8*0³+10*0²+1=1 у(1)=1^4-8*1³+10*1²+1=1-8+10+1=4 у(-2)=(-2)^4-8(-2)³+10(-2)²+1=4+64+40+1=109 наибольшее значение у(3)=3^4-8*3³+10*3²+1=81-216+90+1=-44 наименьшее значение ответ: у наим = -44; у наиб=109
2) ОТРЕЗОК [-1;7] 0∈[-1;7],1∈[-1;7], 5∈[-1;7] у(0)=0^4-8*0³+10*0²+1=1 у(1)=1^4-8*1³+10*1²+1=1-8+10+1=4 у(5)=5^4-8*5³+10*5²+1=625-1000+250+1=-124 наименьшее значение y(-1)= (-1)^4-8*(-1)³+10*(-1)²+1=1+8+10+1=20 наибольшее значение
1)4х=12-4у
х=4(3-у)/4
х=3-у
2)5х=10+у
х=10-у/5
3)3х-6у=1
3х=1+6у
х=1-6у/3
4)2х+8=5у
2х=5у-8
х=5у-8/2
5)ху-у=4
Ху=4+у
х=4+у/у
6)2ху+3у=10
2ху=10-3у
х=10-3у/2у