Я ответила только на 5 вопросов, нонадеюсь, это Итак,
1. Да, может. Пример 19*3=57
2.С=8. Я это выявила методом подстановки.
3. Да, можно. Все плюсы и один минус в квадрате 5х5. Этот минус будет по середине. Всего в квадрате 5х5 9 квадратов 3х3. Когда нарисуешь-увидишминут если минус будет стоять по середине то он будет входить во все это. 9 квадратов.
4. 3367. Опять же методом подстановки. Умножала каждое число на 33.
5. 73. Из 73 вычла 36 получила 37.
7. Нет, получить нельзя. Если число четное, то и кончаться в квадрате оно будет на четное число=> это четное число 4. А потом перебор. Ну я по крайней мере сидела с калькулятором и перебирала квадратные корни. Из того, что я перебирала, целого квадратного корня нету.
найдем одз. под корнем может находиться только неотрицательное значение, значит 5-х> =0, откуда х< =5. корень может принимать только неотрицательные значения, значит 5-х^2> =0, откуда х^2< =5, откуда |х|< =√5, откуда -√5< =х< =√5.
теперь решение:
вoзведем в квадрат:
(5-x^2)^2=5-x
25-10x^2+x^4=5-x
x^4-10x^2+x+20=0
(x^2-x-4)(x^2+x-5)=0
1) x^2-x-4=0
d=17
x(1)=(1+√17)/2> (1+√16)/2=(1+4)/2=5/2=√5*√5/2> √5*√4/2=√5. значит этот корень не подходит.
x(2)=(1-√17)/2 подставляя в изначальное уравнение, проверяем, что этот корень подходит.
2) x^2+x-5=0
d=21
x(1)=(-1+√21)/2 подставляя в изначальное уравнение, проверяем, что этот корень подходит.
x(2)=(-1-√21)/2< (-1-√16)/2=-5/2=-√5*√5/2< -√5*√4/2=-√5. значит этот корень не подходит.
ответ: х(1)=(1-√17)/2, х(2)=(-1+√21)/2.