Используем формулу n-го члена арифметической прогресии a (n)=a1+d(n-1) В конце работы грузовик перевозит 270 тонн, а работа была выполнена за 15 дней, значит а15=270 (а15 читается а пятнадцатая 15 пишется внизу) , В первый день он отвёз 4 т, значит а1=4, всего он работал 15 дней n=15, Найдём число тонн, на которое ежедневно увеличивались перевозки.это d -разность арифметической прогресии.
270=4+d(15-1) 270-4=14d d=19
Найдём теперь, сколько грузовик отвёз на 6-ой день, т.е. найдём а6 а6=4+19(6-1)=4+95=99 т.
Количество целых решений неравенства 7/(x² -5x+6) +9/(x-3) < -1, принадлежащих отрезку [-6;0) равно:
* * * x²+px + q =(x -x₁)(x - x₂) * * *
7/(x² -5x+6) +9/(x-3) < -1⇔7/(x -2)(x-3) +9/(x-3) +1 < 0⇔
(7 + 9x-18 + x² -5x+6 ) / (x -2)(x-3) < 0 ⇔( x² +4x- 5) / (x -2)(x-3) < 0 ⇔
( x +5)(x- 1) / (x -2)(x-3) < 0 ⇔ ( x +5)(x -1)(x -2)(x-3) < 0
"+" " - " "+" "-" "+"
(-5) (1) (2) ( 3)
x ∈( - 5; 1) ∪ (2 ; 3)
Количество целых решений неравенства , принадлежащих отрезку [-6;0) равно: (-4) +(-3) +(-2) +(-1) = -10 .
ответ: -10.