ответ:
раскроем выражение в уравнении
((xy+x)−3)2+((xy+y)−4)2=0
получаем квадратное уравнение
2x2y2+2x2y+x2+2xy2−14xy−6x+y2−8y+25=0
это уравнение вида
a*x^2 + b*x + c = 0
квадратное уравнение можно решить
с дискриминанта.
корни квадратного уравнения:
x1=d−−√−b2a
x2=−d−−√−b2a
где d = b^2 - 4*a*c - это дискриминант.
т.к.
a=2y2+2y+1
b=2y2−14y−6
c=y2−8y+25
, то
d = b^2 - 4 * a * c =
(-6 - 14*y + 2*y^2)^2 - 4 * (1 + 2*y + 2*y^2) * (25 + y^2 - 8*y) = (-6 - 14*y + 2*y^2)^2 - (4 + 8*y + 8*y^2)*(25 + y^2 - 8*y)
уравнение имеет два корня.
x1 = (-b + sqrt(d)) / (2*a)
x2 = (-b - sqrt(d)) / (2*a)
обозначим скорость мотоцикла m, а скорость автомобиля а км/мин.
длина трассы 40 км.
за 20 мин мотоцикл проехал 20m км. в этот момент выехал автомобиль.
через 30 мин автомобиль догнал мотоцикл, проехав 30a км.
мотоцикл к этому моменту проехал 20m
+ 30m = 50m км.
30a = 50m; a = 5m/3
еще через 40 минут мотоцикл проехал 40m км, а автомобиль на 1 круг больше, то есть 40a км.
40a = 40m + 40
a = m + 1 = 5m/3
m + 1 = m + 2m/3
2m/3 = 1
m = 3/2 = 1,5 км/мин =
1,5*60 км/ч = 90 км/ч - скорость мотоцикла.
a = 5m/3 = 5*90/3 = 5*30 = 150 км/ч - скорость автомобиля.
Приведем подобные слагаемые:
Чтобы выражение не содержало переменных нужно отнять 2,9а: