Ясно, что если это сосуд, и его нужно заполнить полностью, то вершина его внизу - это сосуд вроде бокала. В противном случае через вершину конусовидный сосуд не заполнить до конца. Поскольку речь идет об одном и том же сосуде, полный его объем и объем заполненной части - подобные тела. Отношение объемов подобных тел равно кубу отношений их линейных размеров, т.е. кубу коэффициента подобия. Если высота заполненной части сосуда равна h, а полной - Н, то k=Н:h=2 V:V₁=k³= 2³=8 V=8*V₁=560 мл Долить нужно V-V₁=560-70=490 мл
Т.к. а- натуральное число, то а=0 мы рассматривать не будем. Представим,что у нас неполное квадратное уравнение: 1) пусть a^2-25=0 ( нет свободного члена). a1=-5; a2=5 тогда уравнение будет выглядеть так: x^2-(2a-4)x=0 x(x-2a+4)=0 - как видим, уравнение имеет два корня a=-5 - не удовлетворяет условию, т.к. не является натуральным числом.
2) пусть теперь средний коэффициент равен нулю 2a-4=0; a=2 Уравнение примет вид: x^2+2^2-25=0 x^2=21 - два корня
3) Рассмотрим теперь полное квадратное уравнение с обязательным условием,что D>=0. D=(2a-4)^2-4(a^2-25)=4a^2-16a+16-4a^2+100=-16a+116>=0; -16a>=-116; a<=7,25 Т.к. а - натуральное число, то а =1,2,3,4,5,6,7.
16x^2+40x+25=9y(домножаємо на -1)
додамо вирази
25x^2 + 40x +16=9y
-16x^2-40x-25=-9y
9 x^2-9=0
9x^2=9
x^2= 9/9
x^2=1
x=1
підставляємо отриманий результат в ріняння
25*1+40*1+16=9y
81=9y
y=81/9
y=9