ОДЗ:
Решаем каждое неравенство:
⇒
⇒
⇒
⇒
Подмодульные выражения обращаются в 0 в точках
и
Это точки делят числовую прямую на три промежутка.
Раскрываем знак модуля на промежутках:
(-∞;-4]
|x+4|=-x-4
|x|=-x
⇒
⇒ x < 1
решение неравенства (-∞;-4]
(-4;0]
|x+4|=x+4
|x|=-x
⇒
⇒ x < -2 или x > 1
решение неравенства (-4;-2)
(0;+∞)
|x+4|=x+4
|x|=x
⇒
⇒ x > 1
решение неравенства (1;+∞]
Объединяем ответы трех случаев:
при
ОДЗ:
Решаем неравенство:
Два случая:
если основание логарифмической функции >1, то она возрастает и большему значению функции соответствует большее значение аргумента
⇒
⇒
второе неравенство решаем на промежутках так:
(-∞;-4]
⇒
⇒
⇒ (-3;-1)
не принадлежат (-∞;-4]
на (-4;0]
⇒
⇒ x < -5 или x > 1
не принадлежат (-4;0]
(0;+∞)
⇒
⇒
⇒
о т в е т этого случая
если основание логарифмической функции 0 < a < 1, то она убывает и большему значению функции соответствует меньшее значение аргумента
⇒
⇒
второе неравенство решаем на промежутках так:
(-∞;-4]
⇒
⇒
⇒
(-∞;-3)U(1;+∞)
о т в е т. (-∞;-4]
на (-4;0]
⇒
⇒ -5 < x < 1
о т в е т. (-4;0]
(0;+∞)
⇒
⇒
⇒
о т в е т этого случая
С учетом ОДЗ получаем окончательный ответ:
4) 9x₁²-12x₁x₂-18x₁x₃+8x₂x₃+8x₃²= (3x₁-2x₂-3x₃)²-(2x₂+x₃)²= y₁² - y₂²
ответ: 1+(-1)=0
5) Составим матрицу квадратичной формы
2 4 3
4 26 -3
3 -3 9
Для определения классификации вычислим главные миноры
Δ₁ = 2 > 0
Минор третьего порядка это определитель самой матрицы, он равен 0
Таким образом, квадратичная форма неотрицательно определена
7) 5x - 2y - 22=0
3x + 2y -10=0
Решаем систему находим x=4 ⇒ y=-1
ответ: 4-1=3
8) y = -8x+1
y = -6x-13
k₁=-8 k₂=-6
tgφ = (k₂-k₁)/(1+k₁k₂)=2/49
φ = arctg(2/49)≈0,04
9) c = 2
e = 5/6
c=ea ⇒ a=12/5 ⇒ a² = 144/25
c² = a² - b² ⇒ b² = 144/25 - 4 = 44/25
a²+b² = 188/25
ответ: 188/25
x^2(3+x)
2. 2x^2+3x=0
x(2x+3)=0
x=0; 2x+3=0
2x=-3
x=-3/2
x= -1,5
3.x^3+2x^2-4x-8=0
x^2(x+2)-4(x+2)=0
(x^2-4)(x+2)=0
(x-2)(x+2)(x+2)=0
x=2; x=-2