Вот наступила золотая осеньe. самая красивая и живописная пора года. осень любит желтые, красные, оранжевые краски, а как любит она осыпать все золотом. вот приходишь в березовую рощу, и не можешь отвести глаз, все в золоте. на березках вместо листочков висят золотые монетки, и, кажется, что от одного дуновения ветерка они начнут тут же звенеть. золотом осыпает осень и парки, особенно липы. идешь и радуешься такой красоте. и начинаешь понимать, почему поэты так любили воспевать осень. а иногда просто слов нет, ну невозможно описать все ту красоту, которая открывается перед тобой. гуляешь по парку и не можешь нагуляться, так не хочется оставлять эту красоту. красиво рано утром, когда хорошая погода. золотые деревья просто сияют на фоне яркого голубого неба. нельзя не восхищаться природой, нет ничего прекраснее нее. ах! как здорово, просто дух захватывает от всего этого великолепия. золотая осень не уходи, порадуй нас еще немножко. но, к сожалению, это время короткое, и вот уже через неделю, деревья начинают сбрасывать свое убранство. а как не хочется расставаться со сказкой, как хочется еще полюбоваться живописными золотыми пейзажами.
1) Положим что 7 это один из катетов, тогда 5 либо второй катет (высота) или высота проведенная к гипотенузе, пусть 5 это высота к гипотенузе и b второй катет, тогда высота равна 7b/√(b^2+49)=5 , откуда b=35/√24 то есть такой катет существует, значит для первого случая возможны два варианта , это треугольники (катет,катет,гипотенуза)=(5,7,√74) и (7,35/√24,49/√24)
2) Пусть 7 это гипотенуза, тогда 5 может быть одним из катетов, тогда второй катет равен √(49-25)=√24 (существует) или высота проведенная к гипотенузе, пусть a,b тогда катеты , откуда ab/7=5 и a^2+b^2=49 ab=35 a^2+b^2=49
a=35/b откуда b^4-49b^2+1225=0 D<0 то есть не существует такого треугольника
Значит существуют всего в сумме 3 различных прямоугольных треугольника с требуемыми условиями.