Cуть теоремы Виета - Произведение корней равно свободному члену c, а их сумма равна коэффициенту b, если уравнение имеет вид ax^2+bx+c=0 1) 5*3=15 ; 5+3 = 8 с пр. знаком -8. 2) 7*(-3)=-21 ; 7+(-3) =4 с пр. знаком -4. Таким образом первое уравнение имеет корни x1=5 ; x2=3 второе x1=7 ; x2=-3
√4.5 * √72 = √4.5 *√ 9*8 = √4.5 * 3 * √8 = √4.5 * 3 * √4*2 = √4.5 * 3 * 2 * √2 = √4.5 * 6 * √2 = √4.5*√2 * 6 = √9 * 6 = 3*6 = 18 т.к выглядит по татарски , напишу письменно корень их 4,5 умножим на корень из 72 , разложим 72 на множители- 9 и 8( что бы корень исчез) , корень из 9 - это 3 , следовательно получаем: корень из √4.5 * 3 * √8 . 8 тоже можно разложить на множители - это 4*2 а корень из 4 - это 2, получаем корень из 4,5, умноженное на 3, умноженное на на 2 и ещё раз умноженное на корень из двух 3 и 2 перемножаем , получаем 6. и теперь у нас остаётся корень из 4,5 и корень из двух их мы тоже перемножим , получим корень из 9 а корень из 9 - это 3 получается что 6*3=18 ОТВЕТ : 18 спрашивай, если что не понятно
Пусть Х% серебра было во втором сплаве. Тогда (Х+25)% было серебра в первом сп. В первом сплаве было 4 кг серебра, значит, приняв за 100% вес первого сплава, получаем, что он весил (100*4)/(Х+25), а второй, соответственно, весил (100*8)/Х. Значит, третий сплав весит (100*4)/(Х+25)+(100*8)/Х кг. С другой стороны, известно, что в третьем (новом) сплаве стало 4+8=12 кг серебра, что составляет 30%. Получаем (12кг*100%)/30%=40кг - вес третьего сплава. Можем составить ур-е: (100*4)/(Х+25)+(100*8)/Х=40. Приводим его к виду Х^2-5*Х-500=0, получаем один корень Х=25 (второй корень отбрасываем, т.к. он отрицательный). В итоге первый сплав весит 400/(Х+25)=400/50=8 кг, второй 800/Х=800/25=32кг, а третий 40 кг
1) 5*3=15 ; 5+3 = 8 с пр. знаком -8.
2) 7*(-3)=-21 ; 7+(-3) =4 с пр. знаком -4.
Таким образом первое уравнение имеет корни x1=5 ; x2=3
второе x1=7 ; x2=-3